首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5876篇
  免费   638篇
  国内免费   25篇
系统科学   1083篇
丛书文集   18篇
教育与普及   13篇
理论与方法论   277篇
现状及发展   872篇
研究方法   1篇
综合类   4275篇
  2023年   4篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   1篇
  2018年   731篇
  2017年   736篇
  2016年   430篇
  2015年   42篇
  2014年   13篇
  2013年   18篇
  2012年   272篇
  2011年   964篇
  2010年   831篇
  2009年   475篇
  2008年   525篇
  2007年   784篇
  2006年   25篇
  2005年   62篇
  2004年   131篇
  2003年   154篇
  2002年   70篇
  2001年   12篇
  2000年   16篇
  1999年   30篇
  1998年   28篇
  1997年   22篇
  1996年   23篇
  1995年   14篇
  1994年   21篇
  1993年   13篇
  1992年   14篇
  1991年   12篇
  1990年   8篇
  1989年   13篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1967年   1篇
排序方式: 共有6539条查询结果,搜索用时 31 毫秒
941.
The passive film formed on 2205 duplex stainless steel (DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements, including potentiodynamic anodic polarization and dynamic electrochemical impedance spectroscopy (DEIS). The results demonstrate that there is a great difference between the passive film evolutions of ferrite and austenite. The impedance values of ferrite are higher than those of austenite. The impedance peaks of ferritic and austenitic phases correspond to the potential of 0.15 and 0.25 V in the low potential range and correspond to 0.8 and 0.75 V in the high potential range. The evolutions of the capacitance of both phases are reverse compared to the evolutions of impedance. The thickness variations obtained from capacitance agree well with those of impedance analysis. The results can be used to explain why pitting corrosion occurs more easily in austenite phase than in ferrite phase.  相似文献   
942.
The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa·m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth  相似文献   
943.
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and other experimental methods. The results show that Si can suppress temper embrittlement, improve temper resistance, and hinder the decomposition of retained austenite. Reversed austenite appears gradually with the increase of Si content during tempering. Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite. Si and C atoms are mutually exclusive in lath bainite, while they attract each other in austenite. ?-carbides are found in 1.8wt% Si steel tempered at 250℃, and they get coarsened obviously when tempered at 400℃, leading to temper embrittlement. Not ?-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel, which can be inferred as cementites and composite compounds. Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.  相似文献   
944.
Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.  相似文献   
945.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   
946.
Based on the first-principles plane wave pseudo-potential method, the electronic structure and electrochemical performance of LixSn4Sb4 (x=2, 4, 6, and 8) and LixSn1-xSb4 (x=9, 10, 11, and 12) phases were calculated. A Sn-Sb thin film on a Cu foil was also prepared by radio frequency magnetron sputtering. The surface morphology, composition, and lithium intercalation/extraction behavior of the fabricated film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV). Lithium atoms can easily insert into and extract out of the β-SnSb cell due to the low lithium intercalation formation energy. It is found that lithium atoms first occupy the interstitial sites, and then Sn atoms at the lattice positions are replaced by excessive lithium. The dissociative Sn atoms continue to produce different Li-Sn phases, which will affect the electrode stability and lead to the undesirable effect due to their large volume expansion ratio. The calculated lithium intercalation potential is stable at about 0.7 V, which is consistent with the experimental result.  相似文献   
947.
Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test, electrical conductivity test, and transmission electron microscope (TEM) examination. It is discovered that thermal effects can be identified through selected area electron diffraction and bright-field images. The reaction peaks around 171, 231, and 276℃ can be attributed to a structural rearrangement of coherent zones, to the precipitation of Ω phases, and to the precipitation of Ω and θ' and possible combination with the transition of θ'→θ, respectively. In addition, the hardness and electrical conductivity of the alloy change proportionately with the progression of reactions during the heating process. This phenomenon can be attributed to the evolution of the microstructure.  相似文献   
948.
The corrosion inhibitor is one of the most important technologies to enhance the durability of steel-reinforced concrete. A kind of time-saving method was developed to assess the inhibitor efficiency by using a 32 V electric field to accelerate chloride ion migration in concrete. Potentiodynamic polarization scanning test was used to evaluate the corrosion states. The comprehensive efficiency of an inhibitor should be assessed in two aspects: resistance to chloride ion permeability and inhibiting efficiency. The specimens with different mixing amount of sodium nitrite and migration corrosion inhibitors were used to verify the accuracy and reliability of this method. The results show the differences in inhibiting efficiency of the inhibitors clearly, indicating the reliability of this time-saving method.  相似文献   
949.
Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.  相似文献   
950.
The precipitation behaviors of X80 acicular ferrite pipeline steel were investigated by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results show that dendritic precipitates in the as-cast steel slabs precipitate mainly in grain boundaries, and these dendritic precipitates dissolve and re-precipitate to two kinds of carbonitrides: Ti- and Nb-rich (Ti, Nb)(C, N) carbonitrides during reheating. Four types of precipitates mainly exist in the hot rolled plate: Ti-rich carbonitrides resulted from the dendritic carbonitrides undissolved during the reheating process; Ti-rich carbonitrides re-precipitated along austenite grain boundaries during the reheating process; NbC carbides mainly heterogeneously nucleated on the small pre-existing Nb-rich carbonitrides in the hot rolling process; and NbC carbides precipitated on dislocations during hot rolling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号