首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17586篇
  免费   38篇
  国内免费   75篇
系统科学   66篇
丛书文集   173篇
教育与普及   68篇
理论与方法论   69篇
现状及发展   7929篇
研究方法   750篇
综合类   8480篇
自然研究   164篇
  2012年   232篇
  2011年   388篇
  2009年   105篇
  2008年   289篇
  2007年   326篇
  2006年   307篇
  2005年   321篇
  2004年   347篇
  2003年   310篇
  2002年   309篇
  2001年   489篇
  2000年   514篇
  1999年   356篇
  1994年   304篇
  1992年   285篇
  1991年   230篇
  1990年   283篇
  1989年   256篇
  1988年   271篇
  1987年   294篇
  1986年   303篇
  1985年   360篇
  1984年   245篇
  1983年   262篇
  1982年   215篇
  1981年   210篇
  1980年   251篇
  1979年   518篇
  1978年   444篇
  1977年   400篇
  1976年   325篇
  1975年   389篇
  1974年   480篇
  1973年   433篇
  1972年   442篇
  1971年   574篇
  1970年   616篇
  1969年   545篇
  1968年   536篇
  1967年   465篇
  1966年   413篇
  1965年   296篇
  1964年   135篇
  1959年   167篇
  1958年   324篇
  1957年   256篇
  1956年   205篇
  1955年   201篇
  1954年   193篇
  1948年   169篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
211.
The CDKN2b-CDKN2a locus on chromosome 9p21 in human (chromosome 4 in mouse) is frequently lost in cancer. The locus encodes three cell cycle inhibitory proteins: p15INK4b encoded by CDKN2b, p16INK4a encoded by CDKN2a and p14ARF (p19Arf in mice) encoded by an alternative reading frame of CDKN2a (ref. 1). Whereas the tumour suppressor functions for p16INK4a and p14ARF have been firmly established, the role of p15INK4b remains ambiguous. However, many 9p21 deletions also remove CDKN2b, so we hypothesized a synergistic effect of the combined deficiency for p15INK4b, p14ARF and p16INK4a. Here we report that mice deficient for all three open reading frames (Cdkn2ab-/-) are more tumour-prone and develop a wider spectrum of tumours than Cdkn2a mutant mice, with a preponderance of skin tumours and soft tissue sarcomas (for example, mesothelioma) frequently composed of mixed cell types and often showing biphasic differentiation. Cdkn2ab-/- mouse embryonic fibroblasts (MEFs) are substantially more sensitive to oncogenic transformation than Cdkn2a mutant MEFs. Under conditions of stress, p15Ink4b protein levels are significantly elevated in MEFs deficient for p16Ink4a. Our data indicate that p15Ink4b can fulfil a critical backup function for p16Ink4a and provide an explanation for the frequent loss of the complete CDKN2b-CDKN2a locus in human tumours.  相似文献   
212.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
213.
Höner OP  Wachter B  East ML  Streich WJ  Wilhelm K  Burke T  Hofer H 《Nature》2007,448(7155):798-801
Dispersal has a significant impact on lifetime reproductive success, and is often more prevalent in one sex than the other. In group-living mammals, dispersal is normally male-biased and in theory this sexual bias could be a response by males to female mate preferences, competition for access to females or resources, or the result of males avoiding inbreeding. There is a lack of studies on social mammals that simultaneously assess these factors and measure the fitness consequences of male dispersal decisions. Here we show that male-biased dispersal in the spotted hyaena (Crocuta crocuta) most probably results from an adaptive response by males to simple female mate-choice rules that have evolved to avoid inbreeding. Microsatellite profiling revealed that females preferred sires that were born into or immigrated into the female's group after the female was born. Furthermore, young females preferred short-tenured sires and older females preferred longer-tenured sires. Males responded to these female mate preferences by initiating their reproductive careers in groups containing the highest number of young females. As a consequence, 11% of males started their reproductive career in their natal group and 89% of males dispersed. Males that started reproduction in groups containing the highest number of young females had a higher long-term reproductive success than males that did not. The female mate-choice rules ensured that females effectively avoided inbreeding without the need to discriminate directly against close kin or males born in their own group, or to favour immigrant males. The extent of male dispersal as a response to such female mate preferences depends on the demographic structure of breeding groups, rather than the genetic relatedness between females and males.  相似文献   
214.
215.
216.
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.  相似文献   
217.
The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.  相似文献   
218.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.  相似文献   
219.
The effect of quantum statistics in quantum gases and liquids results in observable collective properties among many-particle systems. One prime example is Bose-Einstein condensation, whose onset in a quantum liquid leads to phenomena such as superfluidity and superconductivity. A Bose-Einstein condensate is generally defined as a macroscopic occupation of a single-particle quantum state, a phenomenon technically referred to as off-diagonal long-range order due to non-vanishing off-diagonal components of the single-particle density matrix. The wavefunction of the condensate is an order parameter whose phase is essential in characterizing the coherence and superfluid phenomena. The long-range spatial coherence leads to the existence of phase-locked multiple condensates in an array of superfluid helium, superconducting Josephson junctions or atomic Bose-Einstein condensates. Under certain circumstances, a quantum phase difference of pi is predicted to develop among weakly coupled Josephson junctions. Such a meta-stable pi-state was discovered in a weak link of superfluid 3He, which is characterized by a 'p-wave' order parameter. The possible existence of such a pi-state in weakly coupled atomic Bose-Einstein condensates has also been proposed, but remains undiscovered. Here we report the observation of spontaneous build-up of in-phase ('zero-state') and antiphase ('pi-state') 'superfluid' states in a solid-state system; an array of exciton-polariton condensates connected by weak periodic potential barriers within a semiconductor microcavity. These in-phase and antiphase states reflect the band structure of the one-dimensional polariton array and the dynamic characteristics of metastable exciton-polariton condensates.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号