首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32198篇
  免费   134篇
  国内免费   295篇
系统科学   431篇
丛书文集   538篇
教育与普及   130篇
理论与方法论   105篇
现状及发展   13042篇
研究方法   1178篇
综合类   16550篇
自然研究   653篇
  2013年   353篇
  2012年   615篇
  2011年   1261篇
  2010年   433篇
  2009年   420篇
  2008年   730篇
  2007年   831篇
  2006年   815篇
  2005年   749篇
  2004年   661篇
  2003年   542篇
  2002年   545篇
  2001年   858篇
  2000年   923篇
  1999年   638篇
  1994年   341篇
  1992年   490篇
  1991年   419篇
  1990年   472篇
  1989年   439篇
  1988年   429篇
  1987年   462篇
  1986年   449篇
  1985年   542篇
  1984年   435篇
  1983年   381篇
  1982年   354篇
  1981年   342篇
  1980年   405篇
  1979年   879篇
  1978年   721篇
  1977年   700篇
  1976年   533篇
  1975年   658篇
  1974年   844篇
  1973年   737篇
  1972年   734篇
  1971年   910篇
  1970年   1027篇
  1969年   886篇
  1968年   881篇
  1967年   848篇
  1966年   755篇
  1965年   551篇
  1959年   304篇
  1958年   524篇
  1957年   407篇
  1956年   321篇
  1955年   335篇
  1954年   313篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
401.
Engulfment and subsequent degradation of apoptotic cells is an essential step that occurs throughout life in all multicellular organisms. ELMO/Dock180/Rac proteins are a conserved signalling module for promoting the internalization of apoptotic cell corpses; ELMO and Dock180 function together as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac, and thereby regulate the phagocyte actin cytoskeleton during engulfment. However, the receptor(s) upstream of the ELMO/Dock180/Rac module are still unknown. Here we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a receptor upstream of ELMO and as a receptor that can bind phosphatidylserine on apoptotic cells. BAI1 is a seven-transmembrane protein belonging to the adhesion-type G-protein-coupled receptor family, with an extended extracellular region and no known ligands. We show that BAI1 functions as an engulfment receptor in both the recognition and subsequent internalization of apoptotic cells. Through multiple lines of investigation, we identify phosphatidylserine, a key 'eat-me' signal exposed on apoptotic cells, as a ligand for BAI1. The thrombospondin type 1 repeats within the extracellular region of BAI1 mediate direct binding to phosphatidylserine. As with intracellular signalling, BAI1 forms a trimeric complex with ELMO and Dock180, and functional studies suggest that BAI1 cooperates with ELMO/Dock180/Rac to promote maximal engulfment of apoptotic cells. Last, decreased BAI1 expression or interference with BAI1 function inhibits the engulfment of apoptotic targets ex vivo and in vivo. Thus, BAI1 is a phosphatidylserine recognition receptor that can directly recruit a Rac-GEF complex to mediate the uptake of apoptotic cells.  相似文献   
402.
PTC124 targets genetic disorders caused by nonsense mutations   总被引:1,自引:0,他引:1  
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.  相似文献   
403.
404.
405.
406.
407.
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.  相似文献   
408.
The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.  相似文献   
409.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.  相似文献   
410.
The effect of quantum statistics in quantum gases and liquids results in observable collective properties among many-particle systems. One prime example is Bose-Einstein condensation, whose onset in a quantum liquid leads to phenomena such as superfluidity and superconductivity. A Bose-Einstein condensate is generally defined as a macroscopic occupation of a single-particle quantum state, a phenomenon technically referred to as off-diagonal long-range order due to non-vanishing off-diagonal components of the single-particle density matrix. The wavefunction of the condensate is an order parameter whose phase is essential in characterizing the coherence and superfluid phenomena. The long-range spatial coherence leads to the existence of phase-locked multiple condensates in an array of superfluid helium, superconducting Josephson junctions or atomic Bose-Einstein condensates. Under certain circumstances, a quantum phase difference of pi is predicted to develop among weakly coupled Josephson junctions. Such a meta-stable pi-state was discovered in a weak link of superfluid 3He, which is characterized by a 'p-wave' order parameter. The possible existence of such a pi-state in weakly coupled atomic Bose-Einstein condensates has also been proposed, but remains undiscovered. Here we report the observation of spontaneous build-up of in-phase ('zero-state') and antiphase ('pi-state') 'superfluid' states in a solid-state system; an array of exciton-polariton condensates connected by weak periodic potential barriers within a semiconductor microcavity. These in-phase and antiphase states reflect the band structure of the one-dimensional polariton array and the dynamic characteristics of metastable exciton-polariton condensates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号