首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5263篇
  免费   39篇
  国内免费   58篇
系统科学   86篇
丛书文集   158篇
教育与普及   229篇
理论与方法论   25篇
现状及发展   429篇
研究方法   695篇
综合类   3735篇
自然研究   3篇
  2018年   9篇
  2016年   8篇
  2014年   22篇
  2013年   36篇
  2012年   306篇
  2011年   394篇
  2010年   127篇
  2009年   99篇
  2008年   435篇
  2007年   385篇
  2006年   452篇
  2005年   474篇
  2004年   323篇
  2003年   313篇
  2002年   248篇
  2001年   192篇
  2000年   346篇
  1999年   113篇
  1998年   47篇
  1997年   20篇
  1996年   18篇
  1995年   13篇
  1994年   19篇
  1993年   18篇
  1992年   20篇
  1991年   24篇
  1990年   22篇
  1989年   24篇
  1988年   19篇
  1987年   22篇
  1986年   21篇
  1985年   19篇
  1984年   33篇
  1983年   22篇
  1982年   19篇
  1981年   17篇
  1980年   11篇
  1979年   8篇
  1971年   18篇
  1970年   28篇
  1966年   11篇
  1960年   9篇
  1959年   54篇
  1958年   118篇
  1957年   87篇
  1956年   70篇
  1955年   76篇
  1954年   85篇
  1948年   28篇
  1946年   13篇
排序方式: 共有5360条查询结果,搜索用时 15 毫秒
61.
62.
The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined Km values ranged from 0.05 to 0.3 μM and kcat values from 2.3 to 17.6 min−1, while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The Km values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. Received 12 October 2006; received after revision 6 December 2006; accepted 8 January 2007  相似文献   
63.
Telomeres are important segments of chromosomes that protect chromosome ends from nucleolytic degradation and fusion. At meiosis telomeres display an unprecedented behavior which involves their attachment and motility along the nuclear envelope. The movements become restricted to a limited nuclear sector during the so-called bouquet stage, which is widely conserved among species. Recent observations suggest that telomere clustering involves actin and/or microtubules, and is altered in the presence of impaired recombinogenic and chromosome related functions. This review aims to provide an overview of what is currently known about meiotic telomere attachment, dynamics and regulation in synaptic meiosis.  相似文献   
64.
Proinsulin C-peptide is known to bind specifically to cell membranes and to exert intracellular effects, but whether it is internalized in target cells is unknown. In this study, using confocal microscopy and immunostained or rhodamine-labeled peptide, we show that C-peptide is internalized and localized to the cytosol of Swiss 3T3 and HEK-293 cells. In addition, transport into nuclei was found using the labeled peptide. The internalization was followed at 37°C for up to 1 h, and was reduced at 4°C and after preincubation with pertussis toxin. Hence, it is concluded to occur via an energy-dependent, pertussis toxin-sensitive mechanism and without detectable degradation within the experimental time course. Surface plasmon resonance measurements demonstrated binding of HEK-293 cell extract components to C-peptide, and subsequent elution of bound material revealed the components to be intracellular proteins. The identification of C-peptide cellular internalization, intracellular binding proteins, absence of rapid subsequent C-peptide degradation and apparent nuclear internalization support a maintained activity similar to that of an intracrine peptide hormone. Hence, the data suggest the possibility of one further C-peptide site of action. Received 31 October 2006; received after revision 27 December 2006; accepted 30 December 2006  相似文献   
65.
Inactivation of TGF-beta family signaling is implicated in colorectal tumor progression. Using cis-Apc(+/Delta716) Smad4(+/-) mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-beta family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34(+) iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34(+) iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-beta family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.  相似文献   
66.
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.  相似文献   
67.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   
68.
Centronuclear myopathies are characterized by muscle weakness and abnormal centralization of nuclei in muscle fibers not secondary to regeneration. The severe neonatal X-linked form (myotubular myopathy) is due to mutations in the phosphoinositide phosphatase myotubularin (MTM1), whereas mutations in dynamin 2 (DNM2) have been found in some autosomal dominant cases. By direct sequencing of functional candidate genes, we identified homozygous mutations in amphiphysin 2 (BIN1) in three families with autosomal recessive inheritance. Two missense mutations affecting the BAR (Bin1/amphiphysin/RVS167) domain disrupt its membrane tubulation properties in transfected cells, and a partial truncation of the C-terminal SH3 domain abrogates the interaction with DNM2 and its recruitment to the membrane tubules. Our results suggest that mutations in BIN1 cause centronuclear myopathy by interfering with remodeling of T tubules and/or endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for normal muscle function and positioning of nuclei.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号