首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   1篇
系统科学   13篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   27篇
研究方法   30篇
综合类   121篇
自然研究   1篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   18篇
  2011年   31篇
  2010年   7篇
  2009年   3篇
  2008年   22篇
  2007年   13篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   17篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
31.
32.
Persistence of soil organic matter as an ecosystem property   总被引:65,自引:0,他引:65  
Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.  相似文献   
33.
34.
35.
36.
37.
Since being introduced globally as aspirin in 1899, acetylsalicylic acid has been widely used as an analgesic, anti-inflammation, anti-pyretic, and anti-thrombotic drug for years. Aspirin had been reported to down-regulate surface expression of CD40, CD80, CD86, and MHCII in myeloid dendritic cells (DC), which played essential roles in regulating the immune system. We hypothesized that the down-regulation of these surface membrane proteins is partly due to the ability of aspirin in regulating trafficking/sorting of endocytosed surface membrane proteins. By using an established epidermoid carcinoma cell line (A-431), which overexpresses the epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR), we show that aspirin (1) reduces cell surface expression of EGFR and (2) accumulates endocytosed-EGFR and -TfnR in the early/sorting endosome (ESE). Further elucidation of the mechanism suggests that aspirin enhances recruitment of SNX3 and SNX5 to membranes and consistently, both SNX3 and SNX5 play essential roles in the aspirin-mediated accumulation of endocytosed-TfnR at the ESE. This study sheds light on how aspirin may down-regulate surface expression of EGFR by inhibiting/delaying the exit of endocytosed-EGFR from the ESE and recycling of endocytosed-EGFR back to the cell surface.  相似文献   
38.
39.
SIL1 (also called BAP) acts as a nucleotide exchange factor for the Hsp70 chaperone BiP (also called GRP78), which is a key regulator of the main functions of the endoplasmic reticulum. We found nine distinct mutations that would disrupt the SIL1 protein in individuals with Marinesco-Sj?gren syndrome, an autosomal recessive cerebellar ataxia complicated by cataracts, developmental delay and myopathy. Identification of SIL1 mutations implicates Marinesco-Sj?gren syndrome as a disease of endoplasmic reticulum dysfunction and suggests a role for this organelle in multisystem disorders.  相似文献   
40.
Calcium (Ca2+) influx is required for the activation and function of all cells in the immune system. It is mediated mainly by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels located in the plasma membrane. CRAC channels are composed of ORAI proteins that form the channel pore and are activated by stromal interaction molecules (STIM) 1 and 2. Located in the membrane of the endoplasmic reticulum, STIM1 and STIM2 have the dual function of sensing the intraluminal Ca2+ concentration in the ER and to activate CRAC channels. A decrease in the ER’s Ca2+ concentration induces STIM multimerization and translocation into puncta close to the plasma membrane where they bind to and activate ORAI channels. Since the identification of ORAI and STIM genes as the principal mediators of CRAC channel function, substantial advances have been achieved in understanding the molecular regulation and physiological role of CRAC channels in cells of the immune system and other organs. In this review, we discuss the mechanisms that regulate CRAC channel function and SOCE, the role of recently identified proteins and mechanisms that modulate the activation of ORAI/STIM proteins and the consequences of CRAC channel dysregulation for lymphocyte function and immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号