首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   1篇
系统科学   4篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   27篇
研究方法   30篇
综合类   121篇
自然研究   1篇
  2022年   1篇
  2021年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   17篇
  2011年   31篇
  2010年   6篇
  2009年   3篇
  2008年   22篇
  2007年   12篇
  2006年   13篇
  2005年   14篇
  2004年   14篇
  2003年   17篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有187条查询结果,搜索用时 0 毫秒
161.
Steuber T  Rauch M  Masse JP  Graaf J  Malkoc M 《Nature》2005,437(7063):1341-1344
The Cretaceous period is generally considered to have been a time of warm climate. Evidence for cooler episodes exists, particularly in the early Cretaceous period, but the timing and significance of these cool episodes are not well constrained. The seasonality of temperatures is important for constraining equator-to-pole temperature gradients and may indicate the presence of polar ice sheets; however, reconstructions of Cretaceous sea surface temperatures are predominantly based on the oxygen isotopic composition of planktonic foraminifera that do not provide information about such intra-annual variations. Here we present intra-shell variations in delta18O values of rudist bivalves (Hippuritoidea) from palaeolatitudes between 8 degrees and 31 degrees N, which record the evolution of the seasonality of Cretaceous sea surface temperatures in detail. We find high maximum temperatures (approximately 35 to 37 degrees C) and relatively low seasonal variability (< 12 degrees C) between 20 degrees and 30 degrees N during the warmer Cretaceous episodes. In contrast, during the cooler episodes our data show seasonal sea surface temperature variability of up to 18 degrees C near 25 degrees N, comparable to the range found today. Such a large seasonal variability is compatible with the existence of polar ice sheets.  相似文献   
162.
The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).  相似文献   
163.
Bakr WS  Preiss PM  Tai ME  Ma R  Simon J  Greiner M 《Nature》2011,480(7378):500-503
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.  相似文献   
164.
Cipolletta D  Feuerer M  Li A  Kamei N  Lee J  Shoelson SE  Benoist C  Mathis D 《Nature》2012,486(7404):549-553
Obesity and type-2 diabetes have increased markedly over the past few decades, in parallel. One of the major links between these two disorders is chronic, low-grade inflammation. Prolonged nutrient excess promotes the accumulation and activation of leukocytes in visceral adipose tissue (VAT) and ultimately other tissues, leading to metabolic abnormalities such as insulin resistance, type-2 diabetes and fatty-liver disease. Although invasion of VAT by pro-inflammatory macrophages is considered to be a key event driving adipose-tissue inflammation and insulin resistance, little is known about the roles of other immune system cell types in these processes. A unique population of VAT-resident regulatory T (Treg) cells was recently implicated in control of the inflammatory state of adipose tissue and, thereby, insulin sensitivity. Here we identify peroxisome proliferator-activated receptor (PPAR)-γ, the 'master regulator' of adipocyte differentiation, as a crucial molecular orchestrator of VAT Treg cell accumulation, phenotype and function. Unexpectedly, PPAR-γ expression by VAT Treg cells was necessary for complete restoration of insulin sensitivity in obese mice by the thiazolidinedione drug pioglitazone. These findings suggest a previously unknown cellular mechanism for this important class of thiazolidinedione drugs, and provide proof-of-principle that discrete populations of Treg cells with unique functions can be precisely targeted to therapeutic ends.  相似文献   
165.
Dong XP  Cheng X  Mills E  Delling M  Wang F  Kurz T  Xu H 《Nature》2008,455(7215):992-996
TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe(3+)-bound transferrin receptors, or after lysosomal degradation of ferritin-iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe(2+) transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe(2+) transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe(2+) permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe(2+) at varying degrees, which correlate well with the disease severity. A comparison of TRPML1(-/- )ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe(2+) levels, an increase in intralysosomal Fe(2+) levels and an accumulation of lipofuscin-like molecules in TRPML1(-/-) cells. We propose that TRPML1 mediates a mechanism by which Fe(2+) is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients.  相似文献   
166.
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.  相似文献   
167.
168.
It is becoming increasingly clear that the autonomic nervous system and the immune system demonstrate cross-talk during inflammation by means of sympathetic and parasympathetic pathways. We investigated whether phagocytes are capable of de novo production of catecholamines, suggesting an autocrine/paracrine self-regulatory mechanism by catecholamines during inflammation, as has been described for lymphocytes. Here we show that exposure of phagocytes to lipopolysaccharide led to a release of catecholamines and an induction of catecholamine-generating and degrading enzymes, indicating the presence of the complete intracellular machinery for the generation, release and inactivation of catecholamines. To assess the importance of these findings in vivo, we chose two models of acute lung injury. Blockade of alpha2-adrenoreceptors or catecholamine-generating enzymes greatly suppressed lung inflammation, whereas the opposite was the case either for an alpha2-adrenoreceptor agonist or for inhibition of catecholamine-degrading enzymes. We were able to exclude T cells or sympathetic nerve endings as sources of the injury-modulating catecholamines. Our studies identify phagocytes as a new source of catecholamines, which enhance the inflammatory response.  相似文献   
169.
170.
A pancreatic islet-specific microRNA regulates insulin secretion   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号