首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
系统科学   7篇
丛书文集   1篇
理论与方法论   3篇
现状及发展   7篇
研究方法   10篇
综合类   41篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   4篇
  2011年   9篇
  2010年   4篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1982年   1篇
  1975年   1篇
排序方式: 共有69条查询结果,搜索用时 296 毫秒
61.
62.
Vertebrate circadian rhythms: Retinal and extraretinal photoreception   总被引:3,自引:0,他引:3  
Summary ERRs Both the pineal and the SCN are elements of the vertebrate multioscillator system although the relative importance of these 2 areas probably varies between, and possibly within, the different vertebrate classes. Extraretinal photoreception is a universal feature of submammalian vertebrates, and possibly of neonatal mammals, but is absent in adult mammals. Although the pineal systems of sumammalian vertebrates are photosensitive, the pineal system has been directly implicated as an extraocular site for the perception of entraining light cycles only in amphibians. In all other submammalian vertebrates extraretinal entrainment can occur in the absence of the pineal system although it is certainly conceivable that the pineal system may act as an alternate route of photoreception. These extraretinal-extrapineal receptors are located within the brain but the exact location(s) of these receptors within the brain is unknown. The hypothalamus would be likely area for this extraretinal photoreception, however, for several reasons: 1. Neurophysiological studies have identified light sensitive neurons in the frog's hypothalamus43. 2. The avian hypothalamus is a site of photoperiodic photoreception100–103. 3. The only other light sensitive structures known in vertebrates—the pineal system and the lateral eyes—are all derived embryologically from the hypothalamus. 4. The hypothalamus appears to be the site of a circadian clock and there may be advantages in having the photoreceptors and the clock anatomically close to one another. These considerations, of course, do not exclude the possibility that other brain areas may be involved as well. The reason behind the loss of extraretinal photoreception in mammals is uncertain. The shift to exclusive retinal photoreception in mammals may have been dictated by the extensive reorganization that occurred during the evolution of the mammalian brain. Or, perhaps, the increased size of the mammalian skull and overlying tissue made direct photoreception difficult and necessitated a shift to retinal photoreception. The persistence of extraretinal photoreceptors in submammalian vertebrates, however, underscores their importance in the sensory repertoire of vertebrates.  相似文献   
63.
The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.  相似文献   
64.
65.
Serpin-resistant mutants of human tissue-type plasminogen activator   总被引:17,自引:0,他引:17  
Tissue-type plasminogen activator (t-PA) converts the inactive zymogen, plasminogen, into the powerful protease, plasmin, which then degrades the fibrin meshwork of thrombi. To prevent systemic activation of plasminogen, plasma contains several inhibitors of t-PA, the most important of which is plasminogen activator inhibitor-1 (PAI-1), a member of the serpin superfamily. As the ability to produce serpin-resistant variants of t-PA could increase the potential of this enzyme as a thrombolytic agent, we have used the known three-dimensional structure of the complex between trypsin and bovine pancreatic trypsin inhibitor (BPTI) to model the interactions between the active site of human t-PA and PAI-1. On the basis of this model we then altered by site-directed mutagenesis those amino acids of t-PA predicted to make contact with PAI-1 but not with the substrate plasminogen. We report here that although the resulting mutants have enzymatic properties similar to those of wild-type t-PA, they display significant resistance to inhibition by PAI-1. For example, following incubation with an amount of the serpin that completely inhibits the wild-type enzyme, one variant retains 95% of its initial activity. This mutant is also resistant to inhibition by the complex mixture of serpins present in human plasma.  相似文献   
66.
Antibiotic resistance is ancient   总被引:7,自引:0,他引:7  
The discovery of antibiotics more than 70 years ago initiated a period of drug innovation and implementation in human and animal health and agriculture. These discoveries were tempered in all cases by the emergence of resistant microbes. This history has been interpreted to mean that antibiotic resistance in pathogenic bacteria is a modern phenomenon; this view is reinforced by the fact that collections of microbes that predate the antibiotic era are highly susceptible to antibiotics. Here we report targeted metagenomic analyses of rigorously authenticated ancient DNA from 30,000-year-old Beringian permafrost sediments and the identification of a highly diverse collection of genes encoding resistance to β-lactam, tetracycline and glycopeptide antibiotics. Structure and function studies on the complete vancomycin resistance element VanA confirmed its similarity to modern variants. These results show conclusively that antibiotic resistance is a natural phenomenon that predates the modern selective pressure of clinical antibiotic use.  相似文献   
67.
低频减载被认为是当电力系统发生频率严重下降事故时所能采取的最后一项补救措施.针对配电系统中的低频减载问题,文中提出了计及分布式电源和负荷静态特性的最优低频减载策略.该策略以频率及频率变化率为执行依据,并由几个基本轮和一个特殊轮组成.在基本轮中,按反馈控制律分轮次快速切除负荷,以保证频率摆脱紧急状态.而在特殊轮中,则优化...  相似文献   
68.
Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin?2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin?2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin?2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin?2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.  相似文献   
69.
The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号