首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
系统科学   3篇
现状及发展   19篇
研究方法   11篇
综合类   17篇
自然研究   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
11.
It is clear that discards from commercial fisheries are a key food resource for many seabird species around the world. But predicting the response of seabird communities to changes in discard rates is problematic and requires historical data to elucidate the confounding effects of other, more 'natural' ecological processes. In the North Sea, declining stocks, changes in technical measures, changes in population structure and the establishment of a recovery programme for cod (Gadus morhua) will alter the amount of fish discarded. This region also supports internationally important populations of seabirds, some of which feed extensively, but facultatively, on discards, in particular on undersized haddock (Melanogrammus aeglefinus) and whiting (Merlangius merlangus). Here we use long-term data sets from the northern North Sea to show that there is a direct link between discard availability and discard use by a generalist predator and scavenger--the great skua (Stercorarius skua). Reduced rates of discarding, particularly when coupled with reduced availability of small shoaling pelagic fish such as sandeel (Ammodytes marinus), result in an increase in predation by great skuas on other birds. This switching of prey by a facultative scavenger presents a potentially serious threat to some seabird communities.  相似文献   
12.
Target mimicry provides a new mechanism for regulation of microRNA activity   总被引:21,自引:0,他引:21  
MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.  相似文献   
13.
G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA-mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.  相似文献   
14.
Summary The antibiotic bacitracin (5×10–5–4×10–4 M) increases the inhibition of the contractile response caused by both enkephalin release and direct application of Met-enkephalin 5×10–7 M in the longitudinal muscle strip preparation from guinea-pig ileum. This effect is attributed to an inhibition of enkephalin degrading peptidases by bacitracin.  相似文献   
15.
Résumé Une technique a été établie pour estimer quantitativement l'aggrégation des cellules des tissus dissociés par une méthode turbidimétrique. Des fibroblastes de l'embryon de poulet ont été mis en rotation sur un absorbtiomètre. Pendant l'aggrégation des cellules vivantes, on observe une diminution de la densité optique de la suspension mésurée par un galvanomètre.  相似文献   
16.
17.
18.
The gene for the atypical NOTCH ligand delta-like homologue 1 (Dlk1) encodes membrane-bound and secreted isoforms that function in several developmental processes in vitro and in vivo. Dlk1, a member of a cluster of imprinted genes, is expressed from the paternally inherited chromosome. Here we show that mice that are deficient in Dlk1 have defects in postnatal neurogenesis in the subventricular zone: a developmental continuum that results in depletion of mature neurons in the olfactory bulb. We show that DLK1 is secreted by niche astrocytes, whereas its membrane-bound isoform is present in neural stem cells (NSCs) and is required for the inductive effect of secreted DLK1 on self-renewal. Notably, we find that there is a requirement for Dlk1 to be expressed from both maternally and paternally inherited chromosomes. Selective absence of Dlk1 imprinting in both NSCs and niche astrocytes is associated with postnatal acquisition of DNA methylation at the germ-line-derived imprinting control region. The results emphasize molecular relationships between NSCs and the niche astrocyte cells of the microenvironment, identifying a signalling system encoded by a single gene that functions coordinately in both cell types. The modulation of genomic imprinting in a stem-cell environment adds a new level of epigenetic regulation to the establishment and maintenance of the niche, raising wider questions about the adaptability, function and evolution of imprinting in specific developmental contexts.  相似文献   
19.
Speciation through sensory drive in cichlid fish   总被引:1,自引:0,他引:1  
Theoretically, divergent selection on sensory systems can cause speciation through sensory drive. However, empirical evidence is rare and incomplete. Here we demonstrate sensory drive speciation within island populations of cichlid fish. We identify the ecological and molecular basis of divergent evolution in the cichlid visual system, demonstrate associated divergence in male colouration and female preferences, and show subsequent differentiation at neutral loci, indicating reproductive isolation. Evidence is replicated in several pairs of sympatric populations and species. Variation in the slope of the environmental gradients explains variation in the progress towards speciation: speciation occurs on all but the steepest gradients. This is the most complete demonstration so far of speciation through sensory drive without geographical isolation. Our results also provide a mechanistic explanation for the collapse of cichlid fish species diversity during the anthropogenic eutrophication of Lake Victoria.  相似文献   
20.
Alabi AA  Bahamonde MI  Jung HJ  Kim JI  Swartz KJ 《Nature》2007,450(7168):370-375
Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号