首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19414篇
  免费   45篇
  国内免费   48篇
系统科学   144篇
丛书文集   285篇
教育与普及   36篇
理论与方法论   76篇
现状及发展   9321篇
研究方法   781篇
综合类   8668篇
自然研究   196篇
  2012年   220篇
  2011年   426篇
  2009年   88篇
  2008年   268篇
  2007年   293篇
  2006年   326篇
  2005年   315篇
  2004年   434篇
  2003年   304篇
  2002年   301篇
  2001年   553篇
  2000年   506篇
  1999年   367篇
  1994年   87篇
  1992年   350篇
  1991年   255篇
  1990年   274篇
  1989年   265篇
  1988年   222篇
  1987年   263篇
  1986年   310篇
  1985年   371篇
  1984年   284篇
  1983年   249篇
  1982年   233篇
  1981年   239篇
  1980年   259篇
  1979年   648篇
  1978年   530篇
  1977年   504篇
  1976年   388篇
  1975年   449篇
  1974年   651篇
  1973年   523篇
  1972年   538篇
  1971年   632篇
  1970年   799篇
  1969年   624篇
  1968年   625篇
  1967年   622篇
  1966年   523篇
  1965年   436篇
  1964年   146篇
  1959年   214篇
  1958年   373篇
  1957年   280篇
  1956年   226篇
  1955年   218篇
  1954年   213篇
  1948年   156篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
331.
In spiders, temperature is considered an important environmental variable for microhabitat selection. In this study, we evaluated the effect of temperature and rock size on the presence of the sand recluse spider Sicarius thomisoides and the degree of selectivity in different locations. This species is a large spider that lives under rocks in desert and semi-desert climates and is particularly active during the summer. In Chile, these spiders can be found at both coastal and inland locations under different thermal conditions, where usually the temperatures are lower near the coast. If large-scale climatic conditions are important for this species, they may be expected to select lower rock temperatures on the coast than at inland locations. In addition, we would expect that the spiders would choose larger rocks in inland compared to coast locations, which reduce the effect of high temperatures. We found that the probability of finding individuals of this species increased according to rock temperature and rock size in the field. Our results suggest that S. thomisoides prefers larger and warmer rocks to shelter under during the day, this selectivity being similar at both coastal and inland locations. Thus, this species tends to select rocks with the same thermal and structural conditions, independent of the climatic conditions.  相似文献   
332.
333.
334.
In the present study we demonstrated that neurotoxin MPP+-induced DNA damage is followed by ataxia telangiectasia muted (ATM) activation either in cerebellar granule cells (CGC) or in B65 cell line. In CGC, the selective ATM inhibitor KU-55933 showed neuroprotective effects against MPP+-induced neuronal cell loss and apoptosis, lending support to the key role of ATM in experimental models of Parkinson’s disease. Likewise, we showed that knockdown of ATM levels in neuroblastoma B65 cells using an ATM-specific siRNA attenuates the phosphorylation of retinoblastoma protein without affecting other cell-cycle proteins involved in the G0/G1 cell-cycle phase. Moreover, we demonstrated DNA damage, in human brain samples of PD patients. These findings support a model in which MPP+ leads to ATM activation with a subsequent DNA damage response and activation of pRb. Therefore, this study demonstrates a new link between DNA damage by MPP+ and cell-cycle re-entry through retinoblastoma protein phosphorylation.  相似文献   
335.
Triosephosphate isomerase: a highly evolved biocatalyst   总被引:1,自引:0,他引:1  
Triosephosphate isomerase (TIM) is a perfectly evolved enzyme which very fast interconverts dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. Its catalytic site is at the dimer interface, but the four catalytic residues, Asn11, Lys13, His95 and Glu167, are from the same subunit. Glu167 is the catalytic base. An important feature of the TIM active site is the concerted closure of loop-6 and loop-7 on ligand binding, shielding the catalytic site from bulk solvent. The buried active site stabilises the enediolate intermediate. The catalytic residue Glu167 is at the beginning of loop-6. On closure of loop-6, the Glu167 carboxylate moiety moves approximately 2 Å to the substrate. The dynamic properties of the Glu167 side chain in the enzyme substrate complex are a key feature of the proton shuttling mechanism. Two proton shuttling mechanisms, the classical and the criss-cross mechanism, are responsible for the interconversion of the substrates of this enolising enzyme.  相似文献   
336.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   
337.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
338.
339.
The motif “SYDE”, incorporating the protein kinase CK2 consensus sequence (S-x-x-E) has been found to be phosphorylated at both its serine and tyrosine residues in several proteins. Of special interest is the case of cystic fibrosis Transmembrane-conductance Regulator (CFTR), where this motif is close to the residue (F508), whose deletion is the by far commonest cause of cystic fibrosis. Intriguingly, however, CFTR S511 cannot be phosphorylated by CK2 to any appreciable extent. Using a number of peptide substrates encompassing the CFTR “SYDE” site we have recently shown that: (1) failure of CK2 to phosphorylate the S511YDE motif is due to the presence of Y512; (2) CK2 readily phosphorylates S511 if Y512 is replaced by a phospho-tyrosine; (3) the Src family protein tyrosine kinase Lyn phosphorylates Y512 in a manner that is enhanced by the deletion of F508. These data, in conjunction with the recent observation that by inhibiting CK2 the degradation of F508delCFTR is reduced, lead us to hypothesize that the hierarchical phosphorylation of the motif SYDE by the concerted action of protein tyrosine kinases and CK2 is one of the mechanisms that cooperate to the premature degradation of F508delCFTR.  相似文献   
340.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号