首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31771篇
  免费   130篇
  国内免费   264篇
系统科学   451篇
丛书文集   624篇
教育与普及   94篇
理论与方法论   124篇
现状及发展   13027篇
研究方法   1194篇
综合类   15990篇
自然研究   661篇
  2013年   342篇
  2012年   605篇
  2011年   1288篇
  2010年   412篇
  2009年   393篇
  2008年   685篇
  2007年   796篇
  2006年   814篇
  2005年   749篇
  2004年   683篇
  2003年   514篇
  2002年   513篇
  2001年   840篇
  2000年   873篇
  1999年   625篇
  1992年   504篇
  1991年   425篇
  1990年   437篇
  1989年   420篇
  1988年   378篇
  1987年   398篇
  1986年   417篇
  1985年   524篇
  1984年   409篇
  1983年   350篇
  1982年   330篇
  1981年   340篇
  1980年   377篇
  1979年   930篇
  1978年   739篇
  1977年   725篇
  1976年   553篇
  1975年   666篇
  1974年   926篇
  1973年   755篇
  1972年   770篇
  1971年   906篇
  1970年   1093篇
  1969年   891篇
  1968年   864篇
  1967年   899篇
  1966年   747篇
  1965年   613篇
  1964年   200篇
  1959年   325篇
  1958年   522篇
  1957年   392篇
  1956年   312篇
  1955年   325篇
  1954年   303篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z 相似文献   
953.
Nitric oxide can inhibit apoptosis or switch it into necrosis   总被引:4,自引:0,他引:4  
Nitric oxide (NO) and its related molecules are important messengers that play central roles in pathophysiology. Redox modulation of thiol groups on protein cysteine residues by S-nitrosylation can modulate protein function. NO has emerged as a potent regulator of apoptosis in many cell types, either preventing cell death or driving an apoptotic response into a necrotic one. NO protects neuroblastoma cells from retinoid- and cisplatin-induced apoptosis, without significantly increasing necrotic cell damage. Nitrosylation of thiol groups of several critical factors may be important for cell survival. Indeed, S-nitrosylation of the active-site cysteine residue of apoptotic molecules, such as caspases and tissue transglutaminase, results in the inhibition of their catalytic activities and has important implications for the regulation of apoptosis by NO. On the other hand, NO is able to shift the anti-CD95- and ceramide-triggered apoptotic response of Jurkat T cells into necrotic cell death. In these apoptotic models, NO is therefore unable to solely inhibit cell death, indicating that it may act below the point of no return elicited by CD95-ligation and ceramide stimulation.  相似文献   
954.
Mutations in the gene encoding ATP-binding cassette transporter 1 ( ABC1) have been reported in Tangier disease (TD), an autosomal recessive disorder that is characterized by almost complete absence of plasma high-density lipoprotein (HDL), deposition of cholesteryl esters in the reticulo-endothelial system (RES) and aberrant cellular lipid trafficking. We demonstrate here that mice with a targeted inactivation of Abc1 display morphologic abnormalities and perturbations in their lipoprotein metabolism concordant with TD. ABC1 is expressed on the plasma membrane and the Golgi complex, mediates apo-AI associated export of cholesterol and phospholipids from the cell, and is regulated by cholesterol flux. Structural and functional abnormalities in caveolar processing and the trans-Golgi secretory pathway of cells lacking functional ABC1 indicate that lipid export processes involving vesicular budding between the Golgi and the plasma membrane are severely disturbed.  相似文献   
955.
956.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   
957.
Genes specifically expressed in the inner ear are candidates to underlie hereditary nonsyndromic deafness. The gene Otog has been isolated from a mouse subtractive cDNA cochlear library. It encodes otogelin, an N-glycosylated protein that is present in the acellular membranes covering the six sensory epithelial patches of the inner ear: in the cochlea (the auditory sensory organ), the tectorial membrane (TM) over the organ of Corti; and in the vestibule (the balance sensory organ), the otoconial membranes over the utricular and saccular maculae as well as the cupulae over the cristae ampullares of the three semi-circular canals. These membranes are involved in the mechanotransduction process. Their movement, which is induced by sound in the cochlea or acceleration in the vestibule, results in the deflection of the stereocilia bundle at the apex of the sensory hair cells, which in turn opens the mechanotransduction channels located at the tip of the stereo-cilia. We sought to elucidate the role of otogelin in the auditory and vestibular functions by generating mice with a targeted disruption of Otog. In Otog-/- mice, both the vestibular and the auditory functions were impaired. Histological analysis of these mutants demonstrated that in the vestibule, otogelin is required for the anchoring of the otoconial membranes and cupulae to the neuroepithelia. In the cochlea, ultrastructural analysis of the TM indicated that otogelin is involved in the organization of its fibrillar network. Otogelin is likely to have a role in the resistance of this membrane to sound stimulation. These results support OTOG as a possible candidate gene for a human nonsyndromic form of deafness.  相似文献   
958.
959.
960.
A mouse model for spinal muscular atrophy   总被引:1,自引:0,他引:1  
The survival motor neuron gene is present in humans in a telomeric copy, SMN1, and several centromeric copies, SMN2. Homozygous mutation of SMN1 is associated with proximal spinal muscular atrophy (SMA), a severe motor neuron disease characterized by early childhood onset of progressive muscle weakness. To understand the functional role of SMN1 in SMA, we produced mouse lines deficient for mouse Smn and transgenic mouse lines that expressed human SMN2. Smn-/- mice died during the peri-implantation stage. In contrast, transgenic mice harbouring SMN2 in the Smn-/- background showed pathological changes in the spinal cord and skeletal muscles similar to those of SMA patients. The severity of the pathological changes in these mice correlated with the amount of SMN protein that contained the region encoded by exon 7. Our results demonstrate that SMN2 can partially compensate for lack of SMN1. The variable phenotypes of Smn-/-SMN2 mice reflect those seen in SMA patients, providing a mouse model for this disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号