首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5246篇
  免费   30篇
  国内免费   41篇
系统科学   89篇
丛书文集   269篇
教育与普及   250篇
理论与方法论   23篇
现状及发展   409篇
研究方法   593篇
综合类   3682篇
自然研究   2篇
  2022年   10篇
  2018年   10篇
  2016年   12篇
  2015年   12篇
  2014年   38篇
  2013年   31篇
  2012年   298篇
  2011年   351篇
  2010年   125篇
  2009年   108篇
  2008年   399篇
  2007年   356篇
  2006年   448篇
  2005年   494篇
  2004年   325篇
  2003年   285篇
  2002年   240篇
  2001年   205篇
  2000年   294篇
  1999年   105篇
  1998年   49篇
  1997年   34篇
  1996年   24篇
  1995年   26篇
  1994年   23篇
  1993年   30篇
  1992年   24篇
  1991年   19篇
  1990年   28篇
  1989年   34篇
  1988年   18篇
  1987年   15篇
  1986年   33篇
  1985年   23篇
  1984年   22篇
  1983年   15篇
  1982年   21篇
  1981年   30篇
  1980年   13篇
  1979年   13篇
  1971年   16篇
  1970年   28篇
  1966年   15篇
  1959年   68篇
  1958年   124篇
  1957年   91篇
  1956年   66篇
  1955年   88篇
  1954年   84篇
  1948年   25篇
排序方式: 共有5317条查询结果,搜索用时 15 毫秒
371.
Revealing modular organization in the yeast transcriptional network   总被引:21,自引:0,他引:21  
  相似文献   
372.
Systematic screen for human disease genes in yeast   总被引:19,自引:0,他引:19  
High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.  相似文献   
373.
Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop. Expression of oncogenic Ras suppresses PPM1D mRNA induction, leaving p53 phosphorylated at Ser33 and Ser46 and in an active state. Retrovirus-mediated overexpression of PPM1D reduced p53 phosphorylation at these sites, abrogated Ras-induced apoptosis and partially rescued cells from cell-cycle arrest. Inactivation of p38 MAPK (the product of Mapk14) in vivo by gene targeting or by PPM1D overexpression expedited tumor formation after injection of mouse embryo fibroblasts (MEFs) expressing E1A+Ras into nude mice. The gene encoding PPM1D (PPM1D, at 17q22/q23) is amplified in human breast-tumor cell lines and in approximately 11% of primary breast tumors, most of which harbor wildtype p53. These findings suggest that inactivation of the p38 MAPK through PPM1D overexpression resulting from PPM1D amplification contributes to the development of human cancers by suppressing p53 activation.  相似文献   
374.
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.  相似文献   
375.
A missense mutation in Tbce causes progressive motor neuronopathy in mice   总被引:1,自引:0,他引:1  
Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.  相似文献   
376.
Mid-mantle deformation inferred from seismic anisotropy   总被引:2,自引:0,他引:2  
Wookey J  Kendall JM  Barruol G 《Nature》2002,415(6873):777-780
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties--in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga-Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region.  相似文献   
377.
The apical transmembrane protein Crumbs is a central regulator of epithelial apical-basal polarity in Drosophila. Loss-of-function mutations in the human homologue of Crumbs, CRB1 (RP12), cause recessive retinal dystrophies, including retinitis pigmentosa. Here we show that Crumbs and CRB1 localize to corresponding subdomains of the photoreceptor apical plasma membrane: the stalk of the Drosophila photoreceptor and the inner segment of mammalian photoreceptors. These subdomains support the morphogenesis and orientation of the photosensitive membrane organelles: rhabdomeres and outer segments, respectively. Drosophila Crumbs is required to maintain zonula adherens integrity during the rapid apical membrane expansion that builds the rhabdomere. Crumbs also regulates stalk development by stabilizing the membrane-associated spectrin cytoskeleton, a function mechanistically distinct from its role in epithelial apical-basal polarity. We propose that Crumbs is a central component of a molecular scaffold that controls zonula adherens assembly and defines the stalk as an apical membrane subdomain. Defects in such scaffolds may contribute to human CRB1-related retinal dystrophies.  相似文献   
378.
The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor.  相似文献   
379.
Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.  相似文献   
380.
Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes   总被引:3,自引:0,他引:3  
Lee J  Kim H  Kahng SJ  Kim G  Son YW  Ihm J  Kato H  Wang ZW  Okazaki T  Shinohara H  Kuk Y 《Nature》2002,415(6875):1005-1008
Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes, transistors, and random access memory cells. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of approximately 0.5eV is narrowed down to approximately 0.1eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics and nano-optoelectronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号