首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14483篇
  免费   890篇
  国内免费   460篇
系统科学   1447篇
丛书文集   277篇
教育与普及   209篇
理论与方法论   306篇
现状及发展   903篇
研究方法   34篇
综合类   12657篇
  2024年   78篇
  2023年   103篇
  2022年   198篇
  2021年   211篇
  2020年   133篇
  2019年   50篇
  2018年   803篇
  2017年   789篇
  2016年   529篇
  2015年   231篇
  2014年   305篇
  2013年   249篇
  2012年   571篇
  2011年   1281篇
  2010年   1160篇
  2009年   842篇
  2008年   914篇
  2007年   1135篇
  2006年   375篇
  2005年   368篇
  2004年   392篇
  2003年   379篇
  2002年   323篇
  2001年   326篇
  2000年   278篇
  1999年   486篇
  1998年   446篇
  1997年   435篇
  1996年   405篇
  1995年   377篇
  1994年   321篇
  1993年   246篇
  1992年   239篇
  1991年   214篇
  1990年   183篇
  1989年   146篇
  1988年   149篇
  1987年   89篇
  1986年   43篇
  1985年   19篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1967年   1篇
  1960年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
811.
812.
813.
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.  相似文献   
814.
Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic and non-toxic, they are ideal materials for clinical applications. Neurodegenerative disorders are ravaging the lives of patients. Even though the mechanism of these diseases is still elusive, they are mainly characterized by the accumulation of misfolded proteins in the central nervous system. So it is essential to develop potential measures to slow down or prevent the onset of these diseases. With the advancements of the technologies, aptamers have opened up new areas in this research field. Aptamers could bind with these related target proteins to interrupt their accumulation, subsequently blocking or preventing the process of neurodegenerative diseases. This review presents recent advances in the aptamer generation and its merits and limitations, with emphasis on its applications in neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, transmissible spongiform encephalopathy, Huntington’s disease and multiple sclerosis.  相似文献   
815.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
816.
DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.  相似文献   
817.
Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.  相似文献   
818.
Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.  相似文献   
819.
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.  相似文献   
820.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号