首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51709篇
  免费   248篇
  国内免费   546篇
系统科学   1220篇
丛书文集   280篇
教育与普及   288篇
理论与方法论   514篇
现状及发展   31291篇
研究方法   494篇
综合类   16226篇
自然研究   2190篇
  2013年   799篇
  2012年   532篇
  2011年   2540篇
  2009年   607篇
  2008年   729篇
  2007年   805篇
  2006年   898篇
  2005年   1079篇
  2004年   2171篇
  2003年   1804篇
  2002年   1480篇
  2001年   1154篇
  2000年   693篇
  1999年   829篇
  1998年   642篇
  1997年   773篇
  1996年   531篇
  1994年   681篇
  1993年   687篇
  1992年   787篇
  1991年   695篇
  1990年   758篇
  1989年   587篇
  1988年   571篇
  1987年   563篇
  1986年   647篇
  1985年   790篇
  1984年   701篇
  1983年   622篇
  1982年   750篇
  1981年   803篇
  1980年   882篇
  1979年   1302篇
  1978年   1180篇
  1977年   1197篇
  1976年   1035篇
  1975年   1008篇
  1974年   874篇
  1973年   1117篇
  1972年   1207篇
  1971年   1171篇
  1970年   1250篇
  1969年   1167篇
  1968年   1132篇
  1967年   978篇
  1966年   816篇
  1965年   661篇
  1964年   476篇
  1958年   497篇
  1957年   446篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The enoyl-acyl carrier protein reductase (ENR) is the last enzyme in the fatty acid elongation cycle. Unlike most enzymes in this essential pathway, ENR displays an unusual diversity among organisms. The growing interest in ENRs is mainly due to the fact that a variety of both synthetic and natural antibacterial compounds are shown to specifically target their activity. The primary anti-tuberculosis drug, isoniazid, and the broadly used antibacterial compound, triclosan, both target this enzyme. In this review, we discuss the diversity of ENRs, and their inhibitors in the light of current research progress. Received 3 November 2008; received after revision 5 December 2008; accepted 8 December 2008  相似文献   
993.
A large number of compounds mimicking the structures of monosaccharides or oligosaccharides have been discovered from natural sources. Such sugar mimics inhibit carbohydrate-degrading enzymes because of a structural resemblance to the sugar moiety of the natural substrate. Carbohydrate-degrading enzymes are involved in a wide range of important biological processes, such as intestinal digestion, posttranslational processing of the sugar chain of glycoproteins, their quality control mechanisms, lysosomal catabolism of glycoconjugates, and some viral infections. It has now been realized that inhibitors of the enzymes have enormous therapeutic potential in diabetes and lysosomal storage disorders. In this review, the general bioactivity, current applications, and the prospects for new therapeutic applications are described. Received 27 August 2008; received after revision 08 November 2008; accepted 03 December 2008  相似文献   
994.
The exposure of phosphatidylserine (PS) at the cell surface plays a critical role in blood coagulation and serves as a macrophage recognition moiety for the engulfment of apoptotic cells. Previous observations have shown that a high extracellular [K+] and selective K+ channel blockers inhibit PS exposure in platelets and erythrocytes. Here we show that the rate of PS exposure in erythrocytes decreases by ~50% when the intracellular [K+] increases from 0 to physiological concentrations. Using resealed erythrocyte membranes, we further show that lipid scrambling is inducible by raising the intracellular [Ca2+] and that K+ ions have a direct inhibitory effect on this process. Lipid scrambling in resealed ghosts occurs in the absence of cell shrinkage and microvesicle formation, processes that are generally attributed to Ca2+-induced lipid scrambling in intact erythrocytes. Thus, opening of Ca2+-sensitive K+ channels causes loss of intracellular K+ that results in reduced intrinsic inhibitory effect of these ions on scramblase activity. Received 11 September 2008; received after revision 17 October 2008; accepted 27 October 2008  相似文献   
995.
Indenone KR-62776 acts as an agonist of PPARγ without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPARγ, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPARγ is one of the key factors explaining the biological responses of the ligands. Received 04 March 2009; received after revision 13 March 2009; accepted 17 March 2009  相似文献   
996.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   
997.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
998.
999.
Bitter peptides and bitter taste receptors   总被引:1,自引:0,他引:1  
Bitter peptides are a structurally diverse group of oligopeptides often generated in fermented, aged, and hydrolyzed food products that make them unfavorable for consumption. Humans perceive bitterness by a repertoire of 25 human bitter receptors, termed T2Rs. Knowledge of the structural features of bitter receptors and of the factors that stimulate bitter receptors will aid in understanding the mechanism responsible for bitter taste perception. This article reviews the current knowledge regarding structural features of bitter peptides and bitter taste receptors. Received 24 November 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
1000.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号