首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25550篇
  免费   51篇
  国内免费   65篇
系统科学   107篇
丛书文集   447篇
教育与普及   61篇
理论与方法论   121篇
现状及发展   12239篇
研究方法   1010篇
综合类   11395篇
自然研究   286篇
  2013年   157篇
  2012年   307篇
  2011年   603篇
  2010年   129篇
  2008年   364篇
  2007年   404篇
  2006年   427篇
  2005年   437篇
  2004年   510篇
  2003年   403篇
  2002年   408篇
  2001年   669篇
  2000年   644篇
  1999年   456篇
  1992年   415篇
  1991年   326篇
  1990年   352篇
  1989年   355篇
  1988年   327篇
  1987年   349篇
  1986年   406篇
  1985年   507篇
  1984年   335篇
  1983年   329篇
  1982年   283篇
  1981年   308篇
  1980年   344篇
  1979年   856篇
  1978年   681篇
  1977年   684篇
  1976年   508篇
  1975年   597篇
  1974年   837篇
  1973年   694篇
  1972年   729篇
  1971年   811篇
  1970年   1029篇
  1969年   832篇
  1968年   844篇
  1967年   814篇
  1966年   673篇
  1965年   540篇
  1964年   176篇
  1959年   294篇
  1958年   512篇
  1957年   391篇
  1956年   328篇
  1955年   308篇
  1954年   306篇
  1948年   214篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
281.
Superconductivity in CaCuO2 as a result of field-effect doping.   总被引:2,自引:0,他引:2  
Understanding the doping mechanisms in the simplest superconducting copper oxide-the infinite-layer compound ACuO2 (where A is an alkaline earth metal)-is an excellent way of investigating the pairing mechanism in high-transition-temperature (high-Tc) superconductors more generally. Gate-induced modulation of the carrier concentration to obtain superconductivity is a powerful means of achieving such understanding: it minimizes the effects of potential scattering by impurities, and of structural modifications arising from chemical dopants. Here we report the transport properties of thin films of the infinite-layer compound CaCuO2 using field-effect doping. At high hole- and electron-doping levels, superconductivity is induced in the nominally insulating material. Maximum values of Tc of 89 K and 34 K are observed respectively for hole- and electron-type doping of around 0.15 charge carriers per CuO2. We can explore the whole doping diagram of the CuO2 plane while changing only a single electric parameter, the gate voltage.  相似文献   
282.
An anomalous transient in the early Hubble-type (S0) galaxy Messier 85 (M85) in the Virgo cluster was discovered by Kulkarni et al. on 7 January 2006 that had very low luminosity (peak absolute R-band magnitude M(R) of about -12) that was constant over more than 80 days, red colour and narrow spectral lines, which seem inconsistent with those observed in any known class of transient events. Kulkarni et al. suggest an exotic stellar merger as the possible origin. An alternative explanation is that the transient in M85 was a type II-plateau supernova of extremely low luminosity, exploding in a lenticular galaxy with residual star-forming activity. This intriguing transient might be the faintest supernova that has ever been discovered.  相似文献   
283.
284.
One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein's PTMs from an in vivo assay into an in vitro system.  相似文献   
285.
Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors.  相似文献   
286.
287.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
288.
Widboom PF  Fielding EN  Liu Y  Bruner SD 《Nature》2007,447(7142):342-345
Enzyme-catalysed oxidations are some of the most common transformations in primary and secondary metabolism. The vancomycin biosynthetic enzyme DpgC belongs to a small class of oxygenation enzymes that are not dependent on an accessory cofactor or metal ion. The detailed mechanism of cofactor-independent oxygenases has not been established. Here we report the first structure of an enzyme of this oxygenase class in complex with a bound substrate mimic. The use of a designed, synthetic substrate analogue allows unique insights into the chemistry of oxygen activation. The structure confirms the absence of cofactors, and electron density consistent with molecular oxygen is present adjacent to the site of oxidation on the substrate. Molecular oxygen is bound in a small hydrophobic pocket and the substrate provides the reducing power to activate oxygen for downstream chemical steps. Our results resolve the unique and complex chemistry of DpgC, a key enzyme in the biosynthetic pathway of an important class of antibiotics. Furthermore, mechanistic parallels exist between DpgC and cofactor-dependent flavoenzymes, providing information regarding the general mechanism of enzymatic oxygen activation.  相似文献   
289.
290.
Catalan G  Scott JF 《Nature》2007,448(7156):E4-5; discussion E5-6
Materials showing simultaneous ferroelectric and magnetic ordering are attracting a great deal of interest because of their unusual physics and potential applications. Hemberger et al. have reported relaxor-like dielectric properties and colossal magnetocapacitance (in excess of 500%) for the cubic spinel compound CdCr2S4 and related isomorphs, concluding that CdCr2S4 is a multiferroic relaxor. We argue here, however, that their results might also be explained by a conductive artefact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号