首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3451篇
  免费   22篇
  国内免费   47篇
系统科学   72篇
丛书文集   190篇
教育与普及   135篇
理论与方法论   11篇
现状及发展   317篇
研究方法   389篇
综合类   2403篇
自然研究   3篇
  2021年   4篇
  2017年   7篇
  2015年   3篇
  2014年   12篇
  2013年   13篇
  2012年   201篇
  2011年   263篇
  2010年   96篇
  2009年   91篇
  2008年   283篇
  2007年   271篇
  2006年   351篇
  2005年   362篇
  2004年   189篇
  2003年   157篇
  2002年   146篇
  2001年   119篇
  2000年   195篇
  1999年   60篇
  1998年   37篇
  1997年   15篇
  1996年   12篇
  1995年   8篇
  1994年   14篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   11篇
  1989年   18篇
  1988年   16篇
  1987年   16篇
  1986年   16篇
  1985年   12篇
  1984年   16篇
  1983年   9篇
  1982年   19篇
  1981年   11篇
  1980年   7篇
  1979年   5篇
  1971年   7篇
  1970年   18篇
  1960年   3篇
  1959年   38篇
  1958年   78篇
  1957年   72篇
  1956年   51篇
  1955年   52篇
  1954年   57篇
  1948年   23篇
  1946年   5篇
排序方式: 共有3520条查询结果,搜索用时 15 毫秒
41.
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.  相似文献   
42.
43.
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic ‘bodyweight/appetite/satiety set point,’ resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer’s disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer’s disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer’s disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.  相似文献   
44.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
45.
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.  相似文献   
46.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10(-9)). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10(-6)). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10(-10)) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.  相似文献   
47.
Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.  相似文献   
48.
Lin Z  Bei JX  Shen M  Li Q  Liao Z  Zhang Y  Lv Q  Wei Q  Low HQ  Guo YM  Cao S  Yang M  Hu Z  Xu M  Wang X  Wei Y  Li L  Li C  Li T  Huang J  Pan Y  Jin O  Wu Y  Wu J  Guo Z  He P  Hu S  Wu H  Song H  Zhan F  Liu S  Gao G  Liu Z  Li Y  Xiao C  Li J  Ye Z  He W  Liu D  Shen L  Huang A  Wu H  Tao Y  Pan X  Yu B  Tai ES  Zeng YX  Ren EC  Shen Y  Liu J  Gu J 《Nature genetics》2012,44(1):73-77
To identify susceptibility loci for ankylosing spondylitis, we performed a two-stage genome-wide association study in Han Chinese. In the discovery stage, we analyzed 1,356,350 autosomal SNPs in 1,837 individuals with ankylosing spondylitis and 4,231 controls; in the validation stage, we analyzed 30 suggestive SNPs in an additional 2,100 affected individuals and 3,496 controls. We identified two new susceptibility loci between EDIL3 and HAPLN1 at 5q14.3 (rs4552569; P = 8.77 × 10(-10)) and within ANO6 at 12q12 (rs17095830; P = 1.63 × 10(-8)). We also confirmed previously reported associations in Europeans within the major histocompatibility complex (MHC) region (top SNP, rs13202464; P < 5 × 10(-324)) and at 2p15 (rs10865331; P = 1.98 × 10(-8)). We show that rs13202464 within the MHC region mainly represents the risk effect of HLA-B*27 variants (including HLA-B*2704, HLA-B*2705 and HLA-B*2715) in Chinese. The two newly discovered loci implicate genes related to bone formation and cartilage development, suggesting their potential involvement in the etiology of ankylosing spondylitis.  相似文献   
49.
Hu Z  Xia Y  Guo X  Dai J  Li H  Hu H  Jiang Y  Lu F  Wu Y  Yang X  Li H  Yao B  Lu C  Xiong C  Li Z  Gui Y  Liu J  Zhou Z  Shen H  Wang X  Sha J 《Nature genetics》2012,44(2):183-186
Non-obstructive azoospermia (NOA) is one of the most severe forms of male infertility. Its pathophysiology is largely unknown, and few genetic influences have been defined. To identify common variants contributing to NOA in Han Chinese men, we performed a three-stage genome-wide association study of 2,927 individuals with NOA and 5,734 controls. The combined analyses identified significant (P < 5.0 × 10(-8)) associations between NOA risk and common variants near PRMT6 (rs12097821 at 1p13.3: odds ratio (OR) = 1.25, P = 5.7 × 10(-10)), PEX10 (rs2477686 at 1p36.32: OR = 1.39, P = 5.7 × 10(-12)) and SOX5 (rs10842262 at 12p12.1: OR = 1.23, P = 2.3 × 10(-9)). These findings implicate genetic variants at 1p13.3, 1p36.32 and 12p12.1 in the etiology of NOA in Han Chinese men.  相似文献   
50.
Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号