首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
  国内免费   1篇
系统科学   5篇
理论与方法论   2篇
现状及发展   40篇
研究方法   22篇
综合类   72篇
自然研究   4篇
  2024年   2篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   14篇
  2011年   20篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
101.
The TrkH/TrkG/KtrB proteins mediate K(+) uptake in bacteria and probably evolved from simple K(+) channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K(+) channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K(+) and Rb(+) over smaller ions such as Na(+) or Li(+). Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K(+) flux. These results reveal the molecular basis of K(+) selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.  相似文献   
102.
103.
Hermansky-Pudlak syndrome (HPS) is a disorder of organelle biogenesis in which oculocutaneous albinism, bleeding and pulmonary fibrosis result from defects of melanosomes, platelet dense granules and lysosomes. HPS is common in Puerto Rico, where it is caused by mutations in the genes HPS1 and, less often, HPS3 (ref. 8). In contrast, only half of non-Puerto Rican individuals with HPS have mutations in HPS1 (ref. 9), and very few in HPS3 (ref. 10). In the mouse, more than 15 loci manifest mutant phenotypes similar to human HPS, including pale ear (ep), the mouse homolog of HPS1 (refs 13,14). Mouse ep has a phenotype identical to another mutant, light ear (le), which suggests that the human homolog of le is a possible human HPS locus. We have identified and found mutations of the human le homolog, HPS4, in a number of non-Puerto Rican individuals with HPS, establishing HPS4 as an important HPS locus in humans. In addition to their identical phenotypes, le and ep mutant mice have identical abnormalities of melanosomes, and in transfected melanoma cells the HPS4 and HPS1 proteins partially co-localize in vesicles of the cell body. In addition, the HPS1 protein is absent in tissues of le mutant mice. These results suggest that the HPS4 and HPS1 proteins may function in the same pathway of organelle biogenesis.  相似文献   
104.
Summary Catalase activity was measured by a quantitative method as an additional screening for discriminating between saprophytic and pathogenic leptospires. Results indicate that water-leptospires have little or no catalase activity.  相似文献   
105.
106.
To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, approximately 150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10(-3), GWA scan; P < 10(-6), replication; P = 10(-9), combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 x 10(-6) in WTCCC). We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.  相似文献   
107.
108.
109.
Human subtelomeres are polymorphic patchworks of interchromosomal segmental duplications at the ends of chromosomes. Here we provide evidence that these patchworks arose recently through repeated translocations between chromosome ends. We assess the relative contribution of the principal mechanisms of ectopic DNA repair to the formation of subtelomeric duplications and find that non-homologous end-joining predominates. Once subtelomeric duplications arise, they are prone to homology-based sequence transfers as shown by the incongruent phylogenetic relationships of neighbouring sections. Interchromosomal recombination of subtelomeres is a potent force for recent change. Cytogenetic and sequence analyses reveal that pieces of the subtelomeric patchwork have changed location and copy number with unprecedented frequency during primate evolution. Half of the known subtelomeric sequence has formed recently, through human-specific sequence transfers and duplications. Subtelomeric dynamics result in a gene duplication rate significantly higher than the genome average and could have both advantageous and pathological consequences in human biology. More generally, our analyses suggest an evolutionary cycle between segmental polymorphisms and genome rearrangements.  相似文献   
110.
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号