首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   0篇
丛书文集   3篇
教育与普及   3篇
现状及发展   10篇
研究方法   45篇
综合类   191篇
  2012年   16篇
  2011年   32篇
  2010年   7篇
  2009年   1篇
  2008年   18篇
  2007年   16篇
  2006年   18篇
  2005年   19篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   14篇
  2000年   16篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1971年   2篇
  1970年   1篇
  1959年   3篇
  1958年   4篇
  1957年   10篇
  1956年   5篇
  1955年   4篇
  1954年   2篇
  1948年   9篇
  1946年   1篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
251.
Brogi M  Snellen IA  de Kok RJ  Albrecht S  Birkby J  de Mooij EJ 《Nature》2012,486(7404):502-504
The giant planet orbiting τ Bo?tis (named τ Bo?tis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Bo?tis b. At a spectral resolution of ~100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5°?±?1.5° and a mass 5.95?±?0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Bo?tis b by the ultraviolet emission from the active host star.  相似文献   
252.
Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Ni?o event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号