首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6199篇
  免费   72篇
  国内免费   166篇
系统科学   87篇
丛书文集   115篇
教育与普及   73篇
理论与方法论   27篇
现状及发展   2330篇
研究方法   247篇
综合类   3537篇
自然研究   21篇
  2015年   39篇
  2014年   55篇
  2013年   50篇
  2012年   94篇
  2011年   140篇
  2010年   71篇
  2009年   134篇
  2008年   128篇
  2007年   161篇
  2006年   121篇
  2005年   172篇
  2004年   213篇
  2003年   248篇
  2002年   381篇
  2001年   417篇
  2000年   321篇
  1999年   227篇
  1998年   41篇
  1997年   43篇
  1996年   44篇
  1995年   42篇
  1992年   115篇
  1991年   103篇
  1990年   99篇
  1989年   77篇
  1988年   89篇
  1987年   89篇
  1986年   68篇
  1985年   111篇
  1984年   93篇
  1983年   70篇
  1982年   76篇
  1981年   67篇
  1980年   86篇
  1979年   166篇
  1978年   153篇
  1977年   126篇
  1976年   98篇
  1975年   85篇
  1974年   118篇
  1973年   114篇
  1972年   106篇
  1971年   127篇
  1970年   129篇
  1969年   115篇
  1968年   109篇
  1967年   101篇
  1966年   102篇
  1965年   75篇
  1958年   42篇
排序方式: 共有6437条查询结果,搜索用时 15 毫秒
951.
952.
953.
954.
Many have hypothesized that cell death in Parkinsons disease is via apoptosis and, specifically, by the mitochondrial-mediated apoptotic pathway. We tested this hypothesis using a mouse dopaminergic cell line of mesencephalic origin, MN9D, challenged with the Parkinsonism-causing neurotoxin MPP+ (1-methyl-4-phenylpyridinium ion). Apoptosis was the main mode of cell death when the cells were subjected to MPP+ treatment under serum-free conditions for 24 h. Caspase-3 and caspase-9, however, were not activated, thus indicating the existence of alternate or compensatory cell death pathway(s) in dopaminergic neuronal cells. Using caspase inhibitors, we demonstrated that these pathways involve caspase-2, –8, –6 and –7. A time-course study indicated that activation of caspase-2 and –8 occurred upstream of caspase-6 and caspase-7. Upon MPP+ challenge, the apoptosis-inducing factor was translocated from the mitochondria into the MN9D cytosol and nucleus. These results suggest the existence of alternative apoptotic pathways in dopaminergic neurons.Received 20 September 2004; received after revision 5 November 2004; accepted 22 November 2004  相似文献   
955.
Diacylglycerol (DAG) was discovered as a potent lipid second messenger with protein kinase C (PKC) as its major cellular target more than 25 years ago. There is increasing evidence of significant complexity within lipid signaling, and the classical DAG-PKC model no longer stands alone but is part of a larger bioactive lipid universe involving glycerolipids and sphingolipids. Multiple layers of regulation exist among PKC- and DAG-metabolizing enzymes such as phosphatidylcholine (PC)-specific phospholipase D, and cross-talk exists between the glycerolipid and sphingolipid pathways, with PKC at the center. Currently, there is intense interest in the question of whether DAG derived from PC can function as a lipid second messenger and regulate PKC analogous to DAG derived from phosphatidylinositol-4,5-bisphosphate (PIP2). To address these issues and incorporate DAG-PKC and other signaling pathways into an expanded view of cell biology, it will be necessary to go beyond the classical approaches and concepts.Received 29 November 2004; received after revision 18 January 2005; accepted 4 March 2005This work is dedicated to the memory of Dr. Yasutomi Nishizuka, the discoverer of protein kinase C, who was both a gentleman and a scientist.  相似文献   
956.
We investigated the activity and the internal motions of a stabilized mutant hen lysozyme (HEL) in which the residues M12 and L56 were mutated to L and F, respectively (LF mutant HEL). The result of the activity measurements against glycol chitin at various temperatures suggested that the temperature dependence of the activity of LF mutant HEL shifted to the high-temperature side compared with that of wild-type HEL. The detailed internal motions of LF mutant HEL in the absence and presence of a substrate analogue, (NAG)3, were examined by model-free analysis at 35°C. The results showed that the internal motions of LF mutant HEL in the presence of (NAG)3 were drastically restricted compared with those in wild-type HEL. Our findings thus suggested that the mutation to the stabilized lysozyme restricted internal motions required for the enzymatic reaction.Received 8 February 2005; accepted 10 March 2005Y. Yoshida and T. Ohkuri contributed equally to this work.  相似文献   
957.
Phosphodiesterases (PDEs) are essential regulators of cyclic nucleotide signaling with diverse physiological functions. Because of their great market potential and therapeutic importance, PDE inhibitors became recognized as important therapeutic agents in the treatment of various diseases. Currently, there are seven PDE inhibitors on the market, and the pharmacological and safety evaluations of many drug candidates are in progress. Three-dimensional (3D) structures of catalytic domains of PDE 1, -3, -4, -5 and -9 in the presence of their inhibitors are now available, and can be utilized for rational drug design. Recent advances in molecular pharmacology of PDE isoenzymes resulted in identification of new potential applications of PDE inhibitors in various therapeutic areas, including dementia, depression and schizophrenia. This review will describe the latest advances in PDE research on 3D structural studies, the potential of therapeutic applications and the development of drug candidates.Received 30 November 2004; received after revision 24 January 2005; accepted 5 February 2005  相似文献   
958.
A new marrow-derived mesenchymal stem cell (hMSC) line that could support expansion of hematopoietic stem/progenitor cells (HSPCs) was developed. Primary hMSCs were infected with retrovirus containing Flt-3 ligand and thrombopoietin genes. CD34+ cells from cord blood were expanded with primary hMSCs or transduced hMSCs. The expansion of total nucleated cells, CD34+ cells and mixed colonies containing erythroid and myeloid cells and megakaryocytes for 2 weeks coculture with transduced hMSCs was remarkably increased. The outputs of long-term culture-initiating cells for 2 and 4 weeks coculture with transduced hMSCs were also largely increased. The expansion rates of HSPCs with transduced hMSCs were unchanged for 6 weeks. In contrast, the expansion rates of HSPCs with primary hMSCs declined drastically through 6 weeks. SCID-repopulating cell expansion with transduced hMSCs for 4 weeks was significantly higher than that of uncultured CD34+ cells and HSPCs expanded with primary hMSCs. Received 21 June 2005; received after revision 30 July 2005; accepted 24 August 2005  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号