首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11142篇
  免费   223篇
  国内免费   544篇
系统科学   1440篇
丛书文集   206篇
教育与普及   1898篇
理论与方法论   128篇
现状及发展   354篇
研究方法   693篇
综合类   7148篇
自然研究   42篇
  2022年   28篇
  2019年   31篇
  2018年   58篇
  2017年   66篇
  2016年   67篇
  2015年   72篇
  2014年   160篇
  2013年   83篇
  2012年   454篇
  2011年   557篇
  2010年   194篇
  2009年   97篇
  2008年   436篇
  2007年   657篇
  2006年   736篇
  2005年   940篇
  2004年   653篇
  2003年   731篇
  2002年   544篇
  2001年   513篇
  2000年   614篇
  1999年   302篇
  1998年   140篇
  1997年   84篇
  1996年   91篇
  1995年   67篇
  1994年   85篇
  1993年   143篇
  1992年   123篇
  1991年   121篇
  1990年   109篇
  1989年   130篇
  1988年   179篇
  1987年   193篇
  1986年   228篇
  1985年   212篇
  1984年   236篇
  1983年   217篇
  1982年   216篇
  1981年   187篇
  1980年   151篇
  1979年   74篇
  1964年   34篇
  1959年   96篇
  1958年   133篇
  1957年   89篇
  1956年   75篇
  1955年   89篇
  1954年   55篇
  1946年   33篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
361.
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.  相似文献   
362.
Cytotoxic T lymphocytes, natural killer cells, and NKT cells are effector cells able to kill infected cells. In some inherited human disorders, a defect in selected proteins involved in the cellular cytotoxicity mechanism results in specific clinical syndromes, grouped under the name of familial hemophagocytic lymphohistiocytosis. Recent advances in genetic studies of these patients has allowed the identification of different genetic subsets. Additional genetic immune deficiencies may also induce a similar clinical picture. International cooperation and prospective trials resulted in refining the diagnostic and therapeutic approach to these rare diseases with improved outcome but also with improved knowledge of the mechanisms underlying granule-mediated cellular cytotoxicity in humans.  相似文献   
363.
A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.  相似文献   
364.
365.
366.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   
367.
Genome-wide association studies (GWAS) have proven to be a powerful method to identify common genetic variants contributing to susceptibility to common diseases. Here, we show that extremely low-coverage sequencing (0.1-0.5×) captures almost as much of the common (>5%) and low-frequency (1-5%) variation across the genome as SNP arrays. As an empirical demonstration, we show that genome-wide SNP genotypes can be inferred at a mean r(2) of 0.71 using off-target data (0.24× average coverage) in a whole-exome study of 909 samples. Using both simulated and real exome-sequencing data sets, we show that association statistics obtained using extremely low-coverage sequencing data attain similar P values at known associated variants as data from genotyping arrays, without an excess of false positives. Within the context of reductions in sample preparation and sequencing costs, funds invested in extremely low-coverage sequencing can yield several times the effective sample size of GWAS based on SNP array data and a commensurate increase in statistical power.  相似文献   
368.
Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.  相似文献   
369.
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA.  相似文献   
370.
Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype   总被引:1,自引:0,他引:1  
The chromosome 17q21.31 deletion syndrome is a genomic disorder characterized by highly distinctive facial features, moderate-to-severe intellectual disability, hypotonia and friendly behavior. Here, we show that de novo loss-of-function mutations in KANSL1 (also called KIAA1267) cause a full del(17q21.31) phenotype in two unrelated individuals that lack deletion at 17q21.31. These findings indicate that 17q21.31 deletion syndrome is a monogenic disorder caused by haploinsufficiency of KANSL1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号