首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11142篇
  免费   223篇
  国内免费   544篇
系统科学   1440篇
丛书文集   206篇
教育与普及   1898篇
理论与方法论   128篇
现状及发展   354篇
研究方法   693篇
综合类   7148篇
自然研究   42篇
  2022年   28篇
  2019年   31篇
  2018年   58篇
  2017年   66篇
  2016年   67篇
  2015年   72篇
  2014年   160篇
  2013年   83篇
  2012年   454篇
  2011年   557篇
  2010年   194篇
  2009年   97篇
  2008年   436篇
  2007年   657篇
  2006年   736篇
  2005年   940篇
  2004年   653篇
  2003年   731篇
  2002年   544篇
  2001年   513篇
  2000年   614篇
  1999年   302篇
  1998年   140篇
  1997年   84篇
  1996年   91篇
  1995年   67篇
  1994年   85篇
  1993年   143篇
  1992年   123篇
  1991年   121篇
  1990年   109篇
  1989年   130篇
  1988年   179篇
  1987年   193篇
  1986年   228篇
  1985年   212篇
  1984年   236篇
  1983年   217篇
  1982年   216篇
  1981年   187篇
  1980年   151篇
  1979年   74篇
  1964年   34篇
  1959年   96篇
  1958年   133篇
  1957年   89篇
  1956年   75篇
  1955年   89篇
  1954年   55篇
  1946年   33篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
281.
282.
283.
The Polycomb complex PRC2 and its mark in life   总被引:2,自引:0,他引:2  
Margueron R  Reinberg D 《Nature》2011,469(7330):343-349
Polycomb group proteins maintain the gene-expression pattern of different cells that is set during early development by regulating chromatin structure. In mammals, two main Polycomb group complexes exist - Polycomb repressive complex 1 (PRC1) and 2 (PRC2). PRC1 compacts chromatin and catalyses the monoubiquitylation of histone H2A. PRC2 also contributes to chromatin compaction, and catalyses the methylation of histone H3 at lysine 27. PRC2 is involved in various biological processes, including differentiation, maintaining cell identity and proliferation, and stem-cell plasticity. Recent studies of PRC2 have expanded our perspectives on its function and regulation, and uncovered a role for non-coding RNA in the recruitment of PRC2 to target genes.  相似文献   
284.
285.
Tumour evolution inferred by single-cell sequencing   总被引:1,自引:0,他引:1  
Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.  相似文献   
286.
Crystal structure of the β2 adrenergic receptor-Gs protein complex   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 ? outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.  相似文献   
287.
Non-natives: 141 scientists object   总被引:1,自引:0,他引:1  
  相似文献   
288.
289.
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号