首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25120篇
  免费   67篇
  国内免费   67篇
系统科学   137篇
丛书文集   135篇
教育与普及   64篇
理论与方法论   127篇
现状及发展   9454篇
研究方法   1085篇
综合类   13697篇
自然研究   555篇
  2013年   239篇
  2012年   362篇
  2011年   957篇
  2010年   155篇
  2008年   403篇
  2007年   489篇
  2006年   493篇
  2005年   478篇
  2004年   514篇
  2003年   457篇
  2002年   464篇
  2001年   872篇
  2000年   892篇
  1999年   509篇
  1992年   478篇
  1991年   392篇
  1990年   407篇
  1989年   437篇
  1988年   405篇
  1987年   409篇
  1986年   417篇
  1985年   509篇
  1984年   397篇
  1983年   341篇
  1982年   289篇
  1981年   269篇
  1980年   319篇
  1979年   778篇
  1978年   586篇
  1977年   554篇
  1976年   484篇
  1975年   557篇
  1974年   725篇
  1973年   608篇
  1972年   584篇
  1971年   771篇
  1970年   981篇
  1969年   674篇
  1968年   700篇
  1967年   651篇
  1966年   683篇
  1965年   447篇
  1964年   134篇
  1959年   228篇
  1958年   404篇
  1957年   259篇
  1956年   236篇
  1955年   202篇
  1954年   181篇
  1948年   196篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
411.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   
412.
Tissue-specific and reversible RNA interference in transgenic mice   总被引:11,自引:0,他引:11  
Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to reversibly control endogenous gene expression using RNA interference (RNAi) in mice. Transgenic mice harboring a tet-responsive RNA polymerase II promoter driving a microRNA-based short hairpin RNA targeting the tumor suppressor Trp53 reversibly express short hairpin RNA when crossed with existing mouse strains expressing general or tissue-specific 'tet-on' or 'tet-off' transactivators. Reversible Trp53 knockdown can be achieved in several tissues, and restoring Trp53 expression in lymphomas whose development is promoted by Trp53 knockdown leads to tumor regression. By leaving the target gene unaltered, this approach permits tissue-specific, reversible regulation of endogenous gene expression in vivo, with potential broad application in basic biology and drug target validation.  相似文献   
413.
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.  相似文献   
414.
On the design and analysis of gene expression studies in human populations   总被引:2,自引:0,他引:2  
Akey JM  Biswas S  Leek JT  Storey JD 《Nature genetics》2007,39(7):807-8; author reply 808-9
  相似文献   
415.
416.
The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid beta peptide (Abeta) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Abeta-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.  相似文献   
417.
Opitz-Kaveggia syndrome (also known as FG syndrome) is an X-linked disorder characterized by mental retardation, relative macrocephaly, hypotonia and constipation. We report here that the original family for whom the condition is named and five other families have a recurrent mutation (2881C>T, leading to R961W) in MED12 (also called TRAP230 or HOPA), a gene located at Xq13 that functions as a thyroid receptor-associated protein in the Mediator complex.  相似文献   
418.
We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.  相似文献   
419.
More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.  相似文献   
420.
During its lifetime, the mammary gland undergoes many phases of development and differentiation. Much of this occurs during puberty, when the ductal epithelium expands by branching morphogenesis, invading the surrounding fat pad to form an organised mammary tree. Throughout its existence, the epithelium will go through several cycles of proliferation and cell death during pregnancy, lactation and involution. Many of the signalling mechanisms which control the initial invasion of the fat pad by the epithelium, and regulate its continuing plasticity, can be harnessed or corrupted by tumour cells in order to support their aberrant growth and progression towards invasion. This is true not just for the epithelial cells themselves but also for cells in the surrounding microenvironment, including fibroblasts, macrophages and adipocytes. This review examines the complex web of signalling and adhesion interactions controlling branching morphogenesis, and how their alteration can promote malignancy. Current in vivo and in vitro mammary gland models are also discussed. (Part of a Multi-author Review)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号