首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24367篇
  免费   62篇
  国内免费   72篇
系统科学   97篇
丛书文集   155篇
教育与普及   55篇
理论与方法论   76篇
现状及发展   9311篇
研究方法   1072篇
综合类   13278篇
自然研究   457篇
  2013年   207篇
  2012年   325篇
  2011年   807篇
  2010年   148篇
  2008年   372篇
  2007年   493篇
  2006年   470篇
  2005年   463篇
  2004年   456篇
  2003年   427篇
  2002年   435篇
  2001年   975篇
  2000年   960篇
  1999年   569篇
  1994年   313篇
  1992年   519篇
  1991年   441篇
  1990年   475篇
  1989年   464篇
  1988年   438篇
  1987年   419篇
  1986年   445篇
  1985年   518篇
  1984年   436篇
  1983年   382篇
  1982年   316篇
  1981年   308篇
  1980年   334篇
  1979年   782篇
  1978年   604篇
  1977年   555篇
  1976年   471篇
  1975年   509篇
  1974年   663篇
  1973年   530篇
  1972年   560篇
  1971年   703篇
  1970年   858篇
  1969年   604篇
  1968年   651篇
  1967年   549篇
  1966年   584篇
  1965年   385篇
  1959年   203篇
  1958年   337篇
  1957年   232篇
  1956年   170篇
  1955年   158篇
  1954年   163篇
  1948年   142篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
831.
832.
Huntington disease (HD), an autosomal dominant, progressive neurodegenerative disorder, is caused by an expanded CAG repeat sequence leading to an increase in the number of glutamine residues in the encoded protein. The normal CAG repeat range is 5-36, whereas 38 or more repeats are found in the diseased state; the severity of disease is roughly proportional to the number of CAG repeats. HD shows anticipation, in which subsequent generations display earlier disease onsets due to intergenerational repeat expansion. For longer repeat lengths, somatic instability of the repeat size has been observed both in human cases at autopsy and in transgenic mouse models containing either a genomic fragment of human HD exon 1 (ref. 9) or an expanded repeat inserted into the endogenous mouse gene Hdh (ref. 10). With increasing repeat number, the protein changes conformation and becomes increasingly prone to aggregation, suggesting important functional correlations between repeat length and pathology. Because dinucleotide repeat instability is known to increase when the mismatch repair enzyme MSH2 is missing, we examined instability of the HD CAG repeat by crossing transgenic mice carrying exon 1 of human HD (ref. 16) with Msh2-/- mice. Our results show that Msh2 is required for somatic instability of the CAG repeat.  相似文献   
833.
834.
835.
Anti-Latour   总被引:2,自引:0,他引:2  
  相似文献   
836.
Bacterial suicide through stress   总被引:9,自引:0,他引:9  
Outside of the laboratory, bacterial cells are constantly exposed to stressful conditions, and an ability to resist those stresses is essential to their survival. However, the degree of stress required to bring about cell death varies with growth phase, amongst other parameters. Exponential phase cells are significantly more sensitive to stress than stationary phase ones, and a novel hypothesis has recently been advanced to explain this difference in sensitivity, the suicide response. Essentially, the suicide response predicts that rapidly growing and respiring bacterial cells will suffer growth arrest when subjected to relatively mild stresses, but their metabolism will continue: a burst of free-radical production results from this uncoupling of growth from metabolism, and it is this free-radical burst that is lethal to the cells, rather than the stress per se. The suicide response hypothesis unifies a variety of previously unrelated empirical observations, for instance induction of superoxide dismutase by heat shock, alkyl-hydroperoxide reductase by osmotic shock and catalase by ethanol shock. The suicide response also has major implications for current [food] processing methods. Received 29 March 1999; received after revision 14 May 1999; accepted 17 May 1999  相似文献   
837.
At the end of mitosis, daughter cells are separated from each other by cytokinesis. This process involves equal partitioning and segregation of cytoplasm between the two cells. Despite years of study, the mechanism driving cytokinesis in animal cells is not fully understood. Actin and myosin are major components of the contractile ring, the structure at the equator between the dividing cells that provides the force necessary to constrict the cytoplasm. Despite this, there are also tantalizing results suggesting that cytokinesis can occur in the absence of myosin. It is unclear what the roles are of the few other contractile ring components identified to date. While it has been difficult to identify important proteins involved in cytokinesis, it has been even more challenging to pinpoint the regulatory mechanisms that govern this vital process. Cytokinesis must be precisely controlled both spatially and temporally; potential regulators of these parameters are just beginning to be identified. This review discusses the recent progress in our understanding of cytokinesis in animal cells and the mechanisms that may regulate it. Received 24 August 1998; received after revision 9 October 1998; accepted 9 October 1998  相似文献   
838.
Apolipoprotein E (apoE) ɛ4 allele is a genetic risk factor for late-onset familial and sporadic Alzheimer’s disease (AD). In the central nervous system, apoE is secreted mainly by astrocytes as a constituent of high-density lipoproteins. A recent study using apoE knockout mice provided strong evidence that apoE promotes cerebral deposition of amyloid β protein (Aβ). However, no clear explanation of the pathogenesis of apoE-induced AD has been provided. Here we discuss two possible mechanisms by which apoE might enhance Aβ deposition. One is the intracellular pathway in which apoE is internalized by neurons and induces lysosomal accumulation of Aβ and amyloidogenic APP (amyloid precursor protein) fragments, leading to neuronal death. The other is the extracellular pathway in which apoE-containing lipoproteins are trapped by Aβ1–42 deposits mobilizing soluble Aβ peptides and consequently enlarge amyloid plaques. These two mechanisms may operate at different stages of AD pathogenesis and suggest a chaperone-like function for the apoE molecule. Received 4 February 1999; received after revision 9 April 1999; accepted 23 April 1999  相似文献   
839.
The kinesins constitute a large family of motor proteins which are responsible for the distribution of numerous organelles, vesicles and macromolecular complexes throughout the cell. One class of these molecular motors, kinesin-II, is unique in that these proteins are typically found as heterotrimeric complexes containing two different, though related, kinesin-like motor subunits, and a single nonmotor subunit. The heteromeric nature of these kinesins appears to have resulted in a class of combinatorial kinesins which can 'mix and match' different motor subunits. Another novel feature of these motors is that the activities of several kinesin-II representatives are essential in the assembly of motile and nonmotile cilia, a role not attributed to any other kinesin. This review presents a brief overview of the structure and biological functions of kinesin-II, the heteromeric kinesin.  相似文献   
840.
Immune responses to DNA vaccines   总被引:16,自引:0,他引:16  
DNA vaccines, based on plasmid vectors expressing an antigen under the control of a strong promoter, have been shown to induce protective immune responses to a number of pathogens, including viruses, bacteria and parasites. They have also displayed efficacy in treatment or prevention of cancer, allergic diseases and autoimmunity. Immunologically, DNA vaccines induce a full spectrum of immune responses that include cytolytic T cells, T helper cells and antibodies. The immune response to DNA vaccines can be enhanced by genetic engineering of the antigen to facilitate its presentation to B and T cells. Furthermore, the immune response can be modulated by genetic adjuvants in the form of vectors expressing biologically active determinants or by more traditional adjuvants that facilitate uptake of DNA into cells. The ease of genetic manipulation of DNA vaccines invites their use not only as vaccines but also as research tools for immunologists and microbiologists. Received 26 October 1998; received after revision 3 December 1998; accepted 3 December 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号