全文获取类型
收费全文 | 30150篇 |
免费 | 77篇 |
国内免费 | 111篇 |
专业分类
系统科学 | 118篇 |
丛书文集 | 275篇 |
教育与普及 | 89篇 |
理论与方法论 | 102篇 |
现状及发展 | 12611篇 |
研究方法 | 1168篇 |
综合类 | 15517篇 |
自然研究 | 458篇 |
出版年
2013年 | 257篇 |
2012年 | 372篇 |
2011年 | 828篇 |
2008年 | 458篇 |
2007年 | 549篇 |
2006年 | 538篇 |
2005年 | 525篇 |
2004年 | 551篇 |
2003年 | 509篇 |
2002年 | 510篇 |
2001年 | 1019篇 |
2000年 | 1017篇 |
1999年 | 597篇 |
1994年 | 343篇 |
1992年 | 532篇 |
1991年 | 452篇 |
1990年 | 507篇 |
1989年 | 501篇 |
1988年 | 482篇 |
1987年 | 483篇 |
1986年 | 519篇 |
1985年 | 594篇 |
1984年 | 450篇 |
1983年 | 446篇 |
1982年 | 375篇 |
1981年 | 364篇 |
1980年 | 414篇 |
1979年 | 947篇 |
1978年 | 753篇 |
1977年 | 687篇 |
1976年 | 576篇 |
1975年 | 673篇 |
1974年 | 901篇 |
1973年 | 739篇 |
1972年 | 747篇 |
1971年 | 973篇 |
1970年 | 1135篇 |
1969年 | 881篇 |
1968年 | 907篇 |
1967年 | 764篇 |
1966年 | 730篇 |
1965年 | 515篇 |
1964年 | 164篇 |
1959年 | 284篇 |
1958年 | 511篇 |
1957年 | 391篇 |
1956年 | 293篇 |
1955年 | 297篇 |
1954年 | 284篇 |
1948年 | 246篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Signaling by reactive oxygen species in the nervous system 总被引:21,自引:0,他引:21
992.
Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy 总被引:12,自引:0,他引:12
Ferdinandusse S Denis S Clayton PT Graham A Rees JE Allen JT McLean BN Brown AY Vreken P Waterham HR Wanders RJ 《Nature genetics》2000,24(2):188-191
Sensory motor neuropathy is associated with various inherited disorders including Charcot-Marie-Tooth disease, X-linked adrenoleukodystrophy/adrenomyeloneuropathy and Refsum disease. In the latter two, the neuropathy is thought to result from the accumulation of specific fatty acids. We describe here three patients with elevated plasma concentrations of pristanic acid (a branched-chain fatty acid) and C27-bile-acid intermediates. Two of the patients suffered from adult-onset sensory motor neuropathy. One patient also had pigmentary retinopathy, suggesting Refsum disease, whereas the other patient had upper motor neuron signs in the legs, suggesting adrenomyeloneuropathy. The third patient was a child without neuropathy. In all three patients we discovered a deficiency of alpha-methylacyl-CoA racemase (AMACR). This enzyme is responsible for the conversion of pristanoyl-CoA and C27-bile acyl-CoAs to their (S)-stereoisomers, which are the only stereoisomers that can be degraded via peroxisomal beta-oxidation. Sequence analysis of AMACR cDNA from the patients identified two different mutations that are likely to cause disease, based on analysis in Escherichia coli. Our findings have implications for the diagnosis of adult-onset neuropathies of unknown aetiology. 相似文献
993.
994.
Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin 总被引:16,自引:0,他引:16
Moreira ES Wiltshire TJ Faulkner G Nilforoushan A Vainzof M Suzuki OT Valle G Reeves R Zatz M Passos-Bueno MR Jenne DE 《Nature genetics》2000,24(2):163-166
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD. 相似文献
995.
996.
A mouse model for spinal muscular atrophy 总被引:1,自引:0,他引:1
The survival motor neuron gene is present in humans in a telomeric copy, SMN1, and several centromeric copies, SMN2. Homozygous mutation of SMN1 is associated with proximal spinal muscular atrophy (SMA), a severe motor neuron disease characterized by early childhood onset of progressive muscle weakness. To understand the functional role of SMN1 in SMA, we produced mouse lines deficient for mouse Smn and transgenic mouse lines that expressed human SMN2. Smn-/- mice died during the peri-implantation stage. In contrast, transgenic mice harbouring SMN2 in the Smn-/- background showed pathological changes in the spinal cord and skeletal muscles similar to those of SMA patients. The severity of the pathological changes in these mice correlated with the amount of SMN protein that contained the region encoded by exon 7. Our results demonstrate that SMN2 can partially compensate for lack of SMN1. The variable phenotypes of Smn-/-SMN2 mice reflect those seen in SMA patients, providing a mouse model for this disease. 相似文献
997.
Novel dominant mutations in Saccharomyces cerevisiae MSH6 总被引:2,自引:0,他引:2
Inherited mutations in the mismatch repair (MMR) genes MSH2 and MLH1 are found in most hereditary nonpolyposis colon cancer (HNPCC) patients studied. Eukaryotic MMR uses two partially redundant mispair-recognition complexes, Msh2p-Msh6p and Msh2p-Msh3p (ref.2) Inactivation of MSH2 causes high rates of accumulation of both base-substitution and frameshift mutations. Mutations in MSH6 or MSH3 cause partial defects in MMR, with inactivation of MSH6 resulting in high rates of base-substitution mutations and low rates of frameshift mutations; inactivation of MSH3 results in low rates of frameshift mutations. These different mutator phenotypes provide an explanation for the observation that MSH2 mutations are common in HNPCC families, whereas mutations in MSH3 and MSH6 are rare. We have identified novel missense mutations in Saccharomyces cerevisiae MSH6 that appear to inactivate both Msh2p-Msh6p- and Msh2p-Msh3p-dependent MMR. Our work suggests that such mutations may underlie some cases of inherited cancer susceptibility similar to those caused by MSH2 mutations. 相似文献
998.
Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis 总被引:16,自引:0,他引:16
Hughes AE Ralston SH Marken J Bell C MacPherson H Wallace RG van Hul W Whyte MP Nakatsuka K Hovy L Anderson DM 《Nature genetics》2000,24(1):45-48
Familial expansile osteolysis (FEO, MIM 174810) is a rare, autosomal dominant bone disorder characterized by focal areas of increased bone remodelling. The osteolytic lesions, which develop usually in the long bones during early adulthood, show increased osteoblast and osteoclast activity. Our previous linkage studies mapped the gene responsible for FEO to an interval of less than 5 cM between D18S64 and D18S51 on chromosome 18q21.2-21.3 in a large Northern Irish family. The gene encoding receptor activator of nuclear factor-kappa B (RANK; ref. 5), TNFRSF11A, maps to this region. RANK is essential in osteoclast formation. We identified two heterozygous insertion mutations in exon 1 of TNFRSF11A in affected members of four families with FEO or familial Paget disease of bone (PDB). One was a duplication of 18 bases and the other a duplication of 27 bases, both of which affected the signal peptide region of the RANK molecule. Expression of recombinant forms of the mutant RANK proteins revealed perturbations in expression levels and lack of normal cleavage of the signal peptide. Both mutations caused an increase in RANK-mediated nuclear factor-kappaB (NF-kappaB) signalling in vitro, consistent with the presence of an activating mutation. 相似文献
999.
MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability 总被引:24,自引:0,他引:24
Lipkin SM Wang V Jacoby R Banerjee-Basu S Baxevanis AD Lynch HT Elliott RM Collins FS 《Nature genetics》2000,24(1):27-35
DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families. 相似文献
1000.
Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development 总被引:12,自引:0,他引:12
Development of the vertebrate limb bud depends on reciprocal interactions between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Sonic hedgehog (SHH) and fibroblast growth factors (FGFs) are key signalling molecules produced in the ZPA and AER, respectively. Experiments in chicks suggested that SHH expression in the ZPA is maintained by FGF4 expression in the AER, and vice versa, providing a molecular mechanism for coordinating the activities of these two signalling centres. This SHH/FGF4 feedback loop model is supported by genetic evidence showing that Fgf4 expression is not maintained in Shh-/- mouse limbs. We report here that Shh expression is maintained and limb formation is normal when Fgf4 is inactivated in mouse limbs, thus contradicting the model. We also found that maintenance of Fgf9 and Fgf17 expression is dependent on Shh, whereas Fgf8 expression is not. We discuss a model in which no individual Fgf expressed in the AER (AER-Fgf) is solely necessary to maintain Shh expression, but, instead, the combined activities of two or more AER-Fgfs function in a positive feedback loop with Shh to control limb development. 相似文献