首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28734篇
  免费   99篇
  国内免费   119篇
系统科学   195篇
丛书文集   454篇
教育与普及   43篇
理论与方法论   114篇
现状及发展   12270篇
研究方法   1387篇
综合类   13927篇
自然研究   562篇
  2013年   247篇
  2012年   490篇
  2011年   1062篇
  2010年   200篇
  2008年   561篇
  2007年   698篇
  2006年   623篇
  2005年   647篇
  2004年   700篇
  2003年   594篇
  2002年   640篇
  2001年   869篇
  2000年   836篇
  1999年   592篇
  1992年   565篇
  1991年   392篇
  1990年   431篇
  1989年   412篇
  1988年   406篇
  1987年   414篇
  1986年   455篇
  1985年   583篇
  1984年   406篇
  1983年   338篇
  1982年   298篇
  1981年   319篇
  1980年   371篇
  1979年   872篇
  1978年   681篇
  1977年   654篇
  1976年   522篇
  1975年   516篇
  1974年   773篇
  1973年   643篇
  1972年   705篇
  1971年   767篇
  1970年   1073篇
  1969年   840篇
  1968年   724篇
  1967年   748篇
  1966年   710篇
  1965年   530篇
  1964年   180篇
  1959年   267篇
  1958年   526篇
  1957年   361篇
  1956年   280篇
  1955年   255篇
  1954年   297篇
  1948年   186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Prader-Willi syndrome (PWS) is associated with paternally derived chromosomal deletions in region 15q11-13 or with maternal disomy for chromosome 15. Therefore, loss of the expressed paternal alleles of maternally imprinted genes must be responsible for the PWS phenotype. We have mapped the gene encoding the small nuclear RNA associated polypeptide SmN (SNRPN) to human chromosome 15q12 and a processed pseudogene SNRPNP1 to chromosome region 6pter-p21. Furthermore, SNRPN was mapped to the minimal deletion interval that is critical for PWS. The fact that the mouse Snrpn gene is maternally imprinted in brain suggests that loss of the paternally derived SNRPN allele may be involved in the PWS phenotype.  相似文献   
892.
Y Kanai  M A Hediger 《Nature》1992,360(6403):467-471
  相似文献   
893.
Ornithine decarboxylase activity is critical for cell transformation.   总被引:50,自引:0,他引:50  
M Auvinen  A Paasinen  L C Andersson  E H?ltt? 《Nature》1992,360(6402):355-358
The enzyme ornithine decarboxylase is the key regulator of the synthesis of polyamines which are essential for cell proliferation. Expression of this enzyme is transiently increased upon stimulation by growth factors, but becomes constitutively activated during cell transformation induced by carcinogens, viruses or oncogenes. To test whether ornithine decarboxylase could be a common mediator of transformation and oncogenic itself, we transfected NIH3T3 cells with expression vectors carrying the complementary DNA encoding human ornithine decarboxylase in sense and antisense orientations. The increased expression of the enzyme (50-100-times endogenous levels) induced not only cell transformation, but also anchorage-independent growth in soft agar and increased tyrosine phosphorylation of a protein of M(r) 130K. Expression of ornithine decarboxylase antisense RNA was associated with an epithelioid morphology and reduced cell proliferation. Moreover, blocking the endogenous enzyme using specific inhibitor or synthesizing antisense RNA prevented transformation of rat fibroblasts by temperature-sensitive v-src oncogene. Our results imply that the gene encoding ornithine decarboxylase is a proto-oncogene central for regulation of cell growth and transformation.  相似文献   
894.
The T-cell receptor is necessary and sufficient for recognition of peptides presented by major histocompatibility complex molecules. Other adhesion molecules, like CD4 or CD8, play an auxiliary role in antigen recognition by T cells. Here we analyse T-cell receptor (TCR) binding using a soluble rather than a cell-bound receptor molecule. A TCR-immunoglobulin chimaera is constructed with the variable and the first constant regions of both the TCR alpha- and beta-chains linked to the immunoglobulin light-chain constant regions. This soluble TCR is expressed, assembled and secreted as an alpha beta heterodimer by a myeloma cell line transfected with the recombinant genes. Furthermore, the soluble TCR is biologically active: it specifically inhibits antigen-dependent activation of the relevant T-cell clones and thus discriminates between proper and irrelevant peptides presented by major histocompatibility complex molecules.  相似文献   
895.
896.
897.
Human aminopeptidase N is a receptor for human coronavirus 229E.   总被引:62,自引:0,他引:62  
Human coronaviruses (HCV) in two serogroups represented by HCV-229E and HCV-OC43 are an important cause of upper respiratory tract infections. Here we report that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strain HCV-229E, but not for HCV-OC43. A monoclonal antibody, RBS, blocked HCV-229E virus infection of human lung fibroblasts, immunoprecipitated aminopeptidase N and inhibited its enzymatic activity. HCV-229E-resistant murine fibroblasts became susceptible after transfection with complementary DNA encoding human aminopeptidase N. By contrast, infection of human cells with HCV-OC43 was not inhibited by antibody RBS and expression of aminopeptidase N did not enhance HCV-OC43 replication in mouse cells. A mutant aminopeptidase lacking the catalytic site of the enzyme did not bind HCV-229E or RBS and did not render murine cells susceptible to HCV-229E infection, suggesting that the virus-binding site may lie at or near the active site of the human aminopeptidase molecule.  相似文献   
898.
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.  相似文献   
899.
Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease.  相似文献   
900.
Elongation factor-1 alpha gene determines susceptibility to transformation.   总被引:14,自引:0,他引:14  
M Tatsuka  H Mitsui  M Wada  A Nagata  H Nojima  H Okayama 《Nature》1992,359(6393):333-336
Elongation factor-1 alpha (EF-1 alpha), an essential component of the eukaryotic translational apparatus, is a GTP-binding protein that catalyses the binding of aminoacyl-transfer RNAs to the ribosome. Expression of the EF-1 alpha gene decreases towards the end of the lifespans of mouse and human fibroblasts, but forced expression of EF-1 alpha prolongs the lifespan of Drosophila melanogaster. Eukaryotic initiation factor-4E, another component of the translational machinery, is mitogenic or oncogenic when constitutively expressed in some mammalian cells. Thus, components of the protein synthesis apparatus seem to be involved in the control of cell proliferation. Using expression cloning, we have isolated a complementary DNA clone from a BALB/c 3T3 mouse fibroblast variant, A31-I-13 (ref. 10), which specifies a factor determining the susceptibility of BALB/c3T3 to chemically and physically induced transformation. Here we report that the factor is EF-1 alpha and that its constitutive expression causes BALB/c 3T3 A31-I-1 (ref. 10), C3H10T1/2 (ref. 11) and Syrian hamster SHOK fibroblasts to become highly susceptible to transformation induced by 3-methylcholanthrene and ultraviolet light. EF-1 alpha messenger RNA is also constitutively expressed in a quiescent culture of the highly susceptible variant A31-I-13. We conclude that the removal of regulation of the expression of these components of the translational machinery may predispose cells to become more susceptible to malignant transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号