首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27550篇
  免费   97篇
  国内免费   111篇
系统科学   121篇
丛书文集   451篇
教育与普及   36篇
理论与方法论   90篇
现状及发展   12099篇
研究方法   1259篇
综合类   13233篇
自然研究   469篇
  2013年   214篇
  2012年   422篇
  2011年   889篇
  2010年   172篇
  2008年   487篇
  2007年   596篇
  2006年   531篇
  2005年   566篇
  2004年   614篇
  2003年   495篇
  2002年   529篇
  2001年   860篇
  2000年   823篇
  1999年   586篇
  1992年   556篇
  1991年   386篇
  1990年   420篇
  1989年   406篇
  1988年   403篇
  1987年   413篇
  1986年   454篇
  1985年   580篇
  1984年   403篇
  1983年   333篇
  1982年   294篇
  1981年   319篇
  1980年   370篇
  1979年   869篇
  1978年   678篇
  1977年   652篇
  1976年   521篇
  1975年   513篇
  1974年   770篇
  1973年   639篇
  1972年   704篇
  1971年   763篇
  1970年   1071篇
  1969年   840篇
  1968年   723篇
  1967年   747篇
  1966年   710篇
  1965年   529篇
  1964年   180篇
  1959年   267篇
  1958年   525篇
  1957年   361篇
  1956年   279篇
  1955年   255篇
  1954年   297篇
  1948年   186篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
511.
Interleukin (IL)-33 is a recently described pro-inflammatory cytokine. Here we demonstrate IL-33 as a regulator of functional osteoclasts (OCs) from human CD14+ monocytes. IL-33 stimulates formation of tartrate-resistant acid phosphatase (TRAP)+ multinuclear OCs from monocytes. This action was suppressed by anti-ST2 antibody, suggesting that IL-33 acts through its receptor ST2, but not by the receptor activator of NF-κB ligand (RANKL) decoy, osteoprotegerin, or anti-RANKL antibody. IL-33 stimulated activating phosphorylations of signaling molecules in monocytes that are critical for OC development. These included Syk, phospholipase Cγ2, Gab2, MAP kinases, TAK-1, and NF-κB. IL-33 also enhanced expression of OC differentiation factors including TNF-α receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin K, and calcitonin receptor. IL-33 eventually induced bone resorption. This study suggests that the osteoclastogenic property of IL-33 is mediated through TRAF6 as well as the immunoreceptor tyrosine-based activation motif-dependent Syk/PLCγ pathway in human CD14+ monocytes.  相似文献   
512.
Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K+ and/or Na+ and characterized by a common structure probably derived from an ancestral K+ channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H+–K+ or Na+–K+ symport, K+ or Na+ uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K+ or Na+ uptake to membrane potential control, adaptation to osmotic or salt stress, or Na+ recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.  相似文献   
513.
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.  相似文献   
514.
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.  相似文献   
515.
516.
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic ‘bodyweight/appetite/satiety set point,’ resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer’s disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer’s disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer’s disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.  相似文献   
517.
Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH(+)) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2 (+/-) than wild-type mice without viability changes of brain TH(+)-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2 (+/-) TH(+)-neurons. Conversely, the number of wild-type retinal TH(+)-amacrine neurons compared to Ranbp2 (+/-) underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU(+)-proliferative cells and non-proliferative gliosis of GFAP(+)-Müller cells in wild-type than Ranbp2 (+/-) that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2 (+/-) mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their β-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.  相似文献   
518.
The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.  相似文献   
519.
Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.  相似文献   
520.
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号