首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   0篇
理论与方法论   1篇
现状及发展   23篇
研究方法   35篇
综合类   91篇
自然研究   10篇
  2018年   1篇
  2016年   1篇
  2012年   3篇
  2011年   14篇
  2010年   4篇
  2008年   8篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1997年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   6篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1965年   3篇
  1957年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
91.
Evidence that miRNAs are different from other RNAs   总被引:13,自引:0,他引:13  
An examination of 513 known pre-miRNAs and 237 other RNAs (tRNA, rRNA, and mRNA) revealed that miRNAs were significantly different from other RNAs (p < 0.001). miRNA genes were less conserved than other RNA genes, although their mature miRNA sequences were highly conserved. The A+U content of pre-miRNAs was higher than non-coding RNA (p < 0.001), but lower than mRNAs. The nucleotides in pre-miRNAs formed more hydrogen bonds and base pairs than in other RNAs. miRNAs had higher negative adjusted minimal folding free energies than other RNAs except tRNAs (p < 0.001). The MFE index (MFEI) was a sufficient criterion to distinguish miRNAs from all coding and non-coding RNAs (p < 0.001). The MFEI for miRNAs was 0.97, significantly higher than tRNAs (0.64), rRNAs (0.59), or mRNAs (0.65). Our findings should facilitate the prediction and identification of new miRNAs using computational and experimental strategies. Received 5 October 2005; received after revision 4 November 2005; accepted 16 November 2005  相似文献   
92.
93.
Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.  相似文献   
94.
95.
Williams-Beuren syndrome (WBS) is most often caused by hemizygous deletion of a 1.5-Mb interval encompassing at least 17 genes at 7q11.23 (refs. 1,2). As with many other haploinsufficiency diseases, the mechanism underlying the WBS deletion is thought to be unequal meiotic recombination, probably mediated by the highly homologous DNA that flanks the commonly deleted region. Here, we report the use of interphase fluorescence in situ hybridization (FISH) and pulsed-field gel electrophoresis (PFGE) to identify a genomic polymorphism in families with WBS, consisting of an inversion of the WBS region. We have observed that the inversion is hemizygous in 3 of 11 (27%) atypical affected individuals who show a subset of the WBS phenotypic spectrum but do not carry the typical WBS microdeletion. Two of these individuals also have a parent who carries the inversion. In addition, in 4 of 12 (33%) families with a proband carrying the WBS deletion, we observed the inversion exclusively in the parent transmitting the disease-related chromosome. These results suggest the presence of a newly identified genomic variant within the population that may be associated with the disease. It may result in predisposition to primarily WBS-causing microdeletions, but may also cause translocations and inversions.  相似文献   
96.
Mima moundfields were investigated at the Lawrence Memorial Grassland Preserve, located on the Columbia Plateau in southern Wasco County, Oregon, and at three locations in the San Luis Valley and Sangre de Cristo Mountains, southern Colorado, to test the alternative hypotheses of mound origins by erosion, frost action, and soil translocation by geomyid pocket gophers. The concentrations of two size classes of small stones, gravel (8-15 mm diameter) and pebbles (15-50 mm diameter), were sampled along mound-to-intermound transects and at different depths within the mounds. Numbers and masses of small stones per unit soil volume increased from intermounds to mounds tops at the Colorado sites and from mound edge to mound top at the Oregon site, where thin intermound soils lay directly on the weathering surface of basalt bedrock. Numbers and masses of small stones in the surface soil of mound tops were greater than or similar to concentrations in deeper layers. Mean masses of individual pebbles were greater in the intermound zone than in mound soils at the Oregon site, but did not differ along mound-intermound gradient at the Oregon site and at one Colorado site, being highest at mound edges or in intermounds. These observations support the hypothesis that mounds are formed by centripetal translocation of soil by geomyid pocket gophers, and are contrary to predictions based on theories assuming erosion or frost action to be the mechanism of mound formation.  相似文献   
97.
F E Cox 《Nature》1984,309(5967):402-403
  相似文献   
98.
R Nusse  A van Ooyen  D Cox  Y K Fung  H Varmus 《Nature》1984,307(5947):131-136
  相似文献   
99.
Antibiotic-producing polyketide synthases (PKSs) are enzymes responsible for the biosynthesis in Streptomyces and related filamentous bacteria of a remarkably broad range of bioactive metabolites, including antitumour aromatic compounds such as mithramycin and macrolide antibiotics such as erythromycin. The molecular basis for the selection of the starter unit on aromatic PKSs is unknown. Here we show that a component of aromatic PKS, previously named 'chain-length factor', is a factor required for polyketide chain initiation and that this factor has decarboxylase activity towards malonyl-ACP (acyl carrier protein). We have re-examined the mechanism of initiation on modular PKSs and have identified as a specific initiation factor a domain of previously unknown function named KSQ, which operates like chain-length factor. Both KSQ and chain-length factor are similar to the ketosynthase domains that catalyse polyketide chain extension in modular multifunctional PKSs and in aromatic PKSs, respectively, except that the ketosynthase domain active-site cysteine residue is replaced by a highly conserved glutamine in KSQ and in chain-length factor. The glutamine residue is important both for decarboxylase activity and for polyketide synthesis.  相似文献   
100.
The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the alpha-subunit of the voltage-gated sodium channel, Na(v)1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Na(v)1.7 by co-expression of wild-type or mutant human Na(v)1.7 with sodium channel beta(1) and beta(2) subunits in HEK293 cells. In cells expressing mutant Na(v)1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号