首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16465篇
  免费   32篇
  国内免费   61篇
系统科学   174篇
丛书文集   183篇
教育与普及   43篇
理论与方法论   98篇
现状及发展   6440篇
研究方法   912篇
综合类   8328篇
自然研究   380篇
  2013年   138篇
  2012年   339篇
  2011年   718篇
  2010年   136篇
  2008年   393篇
  2007年   371篇
  2006年   395篇
  2005年   434篇
  2004年   411篇
  2003年   365篇
  2002年   335篇
  2001年   479篇
  2000年   463篇
  1999年   335篇
  1992年   286篇
  1991年   208篇
  1990年   235篇
  1989年   228篇
  1988年   236篇
  1987年   223篇
  1986年   215篇
  1985年   304篇
  1984年   239篇
  1983年   169篇
  1982年   181篇
  1981年   159篇
  1980年   183篇
  1979年   438篇
  1978年   320篇
  1977年   316篇
  1976年   295篇
  1975年   329篇
  1974年   395篇
  1973年   375篇
  1972年   388篇
  1971年   441篇
  1970年   561篇
  1969年   469篇
  1968年   476篇
  1967年   441篇
  1966年   388篇
  1965年   289篇
  1964年   90篇
  1959年   170篇
  1958年   299篇
  1957年   203篇
  1956年   187篇
  1955年   151篇
  1954年   185篇
  1948年   138篇
排序方式: 共有10000条查询结果,搜索用时 27 毫秒
991.
992.
993.
Transformation: a tool for studying fungal pathogens of plants   总被引:18,自引:0,他引:18  
Plant diseases caused by plant pathogenic fungi continuously threaten the sustainability of global crop production. An effective way to study the disease-causing mechanisms of these organisms is to disrupt their genes, in both a targeted and random manner, so as to isolate mutants exhibiting altered virulence. Although a number of techniques have been employed for such an analysis, those based on transformation are by far the most commonly used. In filamentous fungi, the introduction of DNA by transformation typically results in either the heterologous (illegitimate) integration or the homologous integration of the transforming DNA into the target genome. Homologous integration permits a targeted gene disruption by replacing the wild-type allele on the genome with a mutant allele on transforming DNA. This process has been widely used to determine the role of newly isolated fungal genes in pathogenicity. The heterologous integration of transforming DNA causes a random process of gene disruption (insertional mutagenesis) and has led to the isolation of many fungal mutants defective in pathogenicity. A big advantage of insertional mutagenesis over the more traditional chemical or radiation mutagenesis procedures is that the mutated gene is tagged by transforming DNA and can subsequently be cloned using the transforming DNA. The application of various transformation-based techniques for fungal gene manipulation and how they have increased our understanding and appreciation of some of the most serious plant pathogenic fungi are discussed. Received 9 May 2001; received after revision 2 July 2001; accepted 3 July 2001  相似文献   
994.
Phylogeography of crossbills, bullfinches, grosbeaks, and rosefinches   总被引:1,自引:0,他引:1  
Mitochondrial cytochrome b (cyt b) from 24 Carduelini species including crossbills, bullfinches, grosbeaks, rosefinches, and other related, but not conclusively classified species, was sequenced. These sequences were also compared with all the available sequences from the genera Carduelis, Serinus, and Passer. Phylogenetic analyses consistently gave the same groups of finches and the calculated divergence times suggest that speciation of the studied species occurred between 14 and 3 million years ago (Miocene-Pliocene), appearing before the Passer, Carduelis, and Serinus genera. Pleistocene glaciations may have been important in sub-speciation. Crossbills are integrated within the genus Carduelis, and within redpolls; the common crossbill shows subspeciation with Loxia japonica in the Pleistocene epoch. Pinicola enucleator groups together with bullfinches and is probably the ancestor of the group. Hawfinch is only distantly related to the studied groups, and might either represent an isolated genus or be related to the New World genus Hesperiphona. The grosbeak genera Eophona and Mycerobas are clearly sister groups, and species belonging to the former might have given rise to Mycerobas species. The isolated (in classification) Uragus sibiricus and Haematospiza sipahi are included within the genus Carpodacus (rosefinches); Carpodacus nipalensis is outside the genus Carpodacus in the molecular analyses and might be an isolated species or related to the genus Montifringilla.  相似文献   
995.
The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.  相似文献   
996.
997.
The habitat and nature of early life   总被引:21,自引:0,他引:21  
Nisbet EG  Sleep NH 《Nature》2001,409(6823):1083-1091
Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500-700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 degrees C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80-110 degrees C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.  相似文献   
998.
The transfer of DNA across membranes and between cells is a central biological process; however, its molecular mechanism remains unknown. In prokaryotes, trans-membrane passage by bacterial conjugation, is the main route for horizontal gene transfer. It is the means for rapid acquisition of new genetic information, including antibiotic resistance by pathogens. Trans-kingdom gene transfer from bacteria to plants or fungi and even bacterial sporulation are special cases of conjugation. An integral membrane DNA-binding protein, called TrwB in the Escherichia coli R388 conjugative system, is essential for the conjugation process. This large multimeric protein is responsible for recruiting the relaxosome DNA-protein complex, and participates in the transfer of a single DNA strand during cell mating. Here we report the three-dimensional structure of a soluble variant of TrwB. The molecule consists of two domains: a nucleotide-binding domain of alpha/beta topology, reminiscent of RecA and DNA ring helicases, and an all-alpha domain. Six equivalent protein monomers associate to form an almost spherical quaternary structure that is strikingly similar to F1-ATPase. A central channel, 20 A in width, traverses the hexamer.  相似文献   
999.
Genome sequence of enterohaemorrhagic Escherichia coli O157:H7   总被引:31,自引:0,他引:31  
The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions--all of which could be targets for surveillance.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号