首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   11篇
  国内免费   2篇
系统科学   7篇
教育与普及   2篇
理论与方法论   4篇
现状及发展   79篇
研究方法   90篇
综合类   212篇
自然研究   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   50篇
  2011年   54篇
  2010年   23篇
  2009年   6篇
  2008年   35篇
  2007年   32篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   17篇
  2002年   26篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1975年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
341.
The molecular pathogenesis of renal cell carcinoma (RCC) is poorly understood. Whole-genome and exome sequencing followed by innovative tumorgraft analyses (to accurately determine mutant allele ratios) identified several putative two-hit tumor suppressor genes, including BAP1. The BAP1 protein, a nuclear deubiquitinase, is inactivated in 15% of clear cell RCCs. BAP1 cofractionates with and binds to HCF-1 in tumorgrafts. Mutations disrupting the HCF-1 binding motif impair BAP1-mediated suppression of cell proliferation but not deubiquitination of monoubiquitinated histone 2A lysine 119 (H2AK119ub1). BAP1 loss sensitizes RCC cells in vitro to genotoxic stress. Notably, mutations in BAP1 and PBRM1 anticorrelate in tumors (P = 3 × 10(-5)), and combined loss of BAP1 and PBRM1 in a few RCCs was associated with rhabdoid features (q = 0.0007). BAP1 and PBRM1 regulate seemingly different gene expression programs, and BAP1 loss was associated with high tumor grade (q = 0.0005). Our results establish the foundation for an integrated pathological and molecular genetic classification of RCC, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.  相似文献   
342.
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.  相似文献   
343.
344.
Genome-wide association studies have revealed that common noncoding variants in MTNR1B (encoding melatonin receptor 1B, also known as MT(2)) increase type 2 diabetes (T2D) risk(1,2). Although the strongest association signal was highly significant (P < 1 × 10(-20)), its contribution to T2D risk was modest (odds ratio (OR) of ~1.10-1.15)(1-3). We performed large-scale exon resequencing in 7,632 Europeans, including 2,186 individuals with T2D, and identified 40 nonsynonymous variants, including 36 very rare variants (minor allele frequency (MAF) <0.1%), associated with T2D (OR = 3.31, 95% confidence interval (CI) = 1.78-6.18; P = 1.64 × 10(-4)). A four-tiered functional investigation of all 40 mutants revealed that 14 were non-functional and rare (MAF < 1%), and 4 were very rare with complete loss of melatonin binding and signaling capabilities. Among the very rare variants, the partial- or total-loss-of-function variants but not the neutral ones contributed to T2D (OR = 5.67, CI = 2.17-14.82; P = 4.09 × 10(-4)). Genotyping the four complete loss-of-function variants in 11,854 additional individuals revealed their association with T2D risk (8,153 individuals with T2D and 10,100 controls; OR = 3.88, CI = 1.49-10.07; P = 5.37 × 10(-3)). This study establishes a firm functional link between MTNR1B and T2D risk.  相似文献   
345.
Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.  相似文献   
346.
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.  相似文献   
347.
Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCepsilon1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif-containing GTPase-activating protein 1 as a new interaction partner of PLCepsilon1. Two siblings with a missense mutation in an exon encoding the PLCepsilon1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.  相似文献   
348.
Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.  相似文献   
349.
The Self-Organization of Social Movements   总被引:1,自引:1,他引:0  
The New Social Movement Approach and the Resource Mobilization Approach are the dominant approaches in social movement research. They focus either on macro-aspects and externalism or on micro-aspects and internalism. This paper suggests that the notion of self-organization is one way of taking into account both internal and external, structural- and action-based aspects of social movements and that it allows a dynamic concept of protest. The emergence of social movements is not determined, but a complex result of crisis, resource mobilization, cognitive mobilization, self-production—searching for singular laws of the emergence of movements is an expression of one-dimensional, linear, and deterministic thinking. Protest and social problems are non-linearly related. Social movements are part of the civil society system, by producing alternative topics and demands, they guarantee the dynamic of the political system. Existing system-theoretic approaches on social movements (Luhmann, Japp, Ahlemeyer, Hellmann) are rather uncritical and ignore the productive relationship between human actors and social structures in processes of social self-organization. Social movements are dynamic communication systems that permanently react to political and societal events with self-organized protest practices and protest communications that result in the emergence and differentiation (production and reproduction) of protest structures (events, oppositional topics, alternative values, regularized patterns of interaction and organization). The dynamic of social movements is based on the permanent emergence and mutual production of protest practices and protest structures. The self-organization of a social movement is a vivid process, it is based on the permanent movement and differentiation of actors and structures that communicate public protest, a social movement is only a movement, as long as it communicates protest and moves itself. In critical phases of protest new social systems of protest emerge whose form, content and effects are not determined, but dependent upon old structures, i.e., old structures enable and constrain new structures. The emergence of new protest issues, methods, identities, structures, and organizational forms starts as singular innovation, if it is widely imitated then it spreads within the protest system and transforms the system as a whole. In terms of Hegelian dialectics this means that novel qualities sublate the old structure of the total system, i.e., the system is transformed, reaches a higher level, incorporates old qualities, and creates new qualities. In critical phases protest can spontaneously and quickly spread and intensify itself. This reflects the idea of complexity thinking that small causes can spontaneously have large effects. The notion of self-organization as the idea of the networked, co-operative, synergetic production of emergent qualities and systems should be employed in order to arrive at a dynamic concept of protest. In order to reflect the increasing complexity of society and the emergence of a stratified knowledge society, a multidimensional model of class that is structurally coupled to the concept of social movements is suggested.
Christian FuchsEmail:
  相似文献   
350.
Major viral impact on the functioning of benthic deep-sea ecosystems   总被引:3,自引:0,他引:3  
Viruses are the most abundant biological organisms of the world's oceans. Viral infections are a substantial source of mortality in a range of organisms-including autotrophic and heterotrophic plankton-but their impact on the deep ocean and benthic biosphere is completely unknown. Here we report that viral production in deep-sea benthic ecosystems worldwide is extremely high, and that viral infections are responsible for the abatement of 80% of prokaryotic heterotrophic production. Virus-induced prokaryotic mortality increases with increasing water depth, and beneath a depth of 1,000 m nearly all of the prokaryotic heterotrophic production is transformed into organic detritus. The viral shunt, releasing on a global scale approximately 0.37-0.63 gigatonnes of carbon per year, is an essential source of labile organic detritus in the deep-sea ecosystems. This process sustains a high prokaryotic biomass and provides an important contribution to prokaryotic metabolism, allowing the system to cope with the severe organic resource limitation of deep-sea ecosystems. Our results indicate that viruses have an important role in global biogeochemical cycles, in deep-sea metabolism and the overall functioning of the largest ecosystem of our biosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号