首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2295篇
  免费   10篇
  国内免费   21篇
系统科学   56篇
教育与普及   11篇
理论与方法论   42篇
现状及发展   268篇
研究方法   320篇
综合类   1400篇
自然研究   229篇
  2021年   9篇
  2020年   9篇
  2019年   13篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   14篇
  2014年   30篇
  2013年   32篇
  2012年   163篇
  2011年   394篇
  2010年   55篇
  2009年   17篇
  2008年   165篇
  2007年   169篇
  2006年   156篇
  2005年   214篇
  2004年   195篇
  2003年   186篇
  2002年   167篇
  2001年   15篇
  2000年   15篇
  1999年   19篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1985年   9篇
  1984年   4篇
  1983年   6篇
  1979年   11篇
  1978年   6篇
  1977年   4篇
  1975年   7篇
  1974年   4篇
  1972年   5篇
  1971年   7篇
  1970年   8篇
  1969年   7篇
  1968年   7篇
  1967年   9篇
  1966年   7篇
排序方式: 共有2326条查询结果,搜索用时 453 毫秒
41.
42.
Chan CS  Guzman JN  Ilijic E  Mercer JN  Rick C  Tkatch T  Meredith GE  Surmeier DJ 《Nature》2007,447(7148):1081-1086
Why dopamine-containing neurons of the brain's substantia nigra pars compacta die in Parkinson's disease has been an enduring mystery. Our studies suggest that the unusual reliance of these neurons on L-type Ca(v)1.3 Ca2+ channels to drive their maintained, rhythmic pacemaking renders them vulnerable to stressors thought to contribute to disease progression. The reliance on these channels increases with age, as juvenile dopamine-containing neurons in the substantia nigra pars compacta use pacemaking mechanisms common to neurons not affected in Parkinson's disease. These mechanisms remain latent in adulthood, and blocking Ca(v)1.3 Ca2+ channels in adult neurons induces a reversion to the juvenile form of pacemaking. Such blocking ('rejuvenation') protects these neurons in both in vitro and in vivo models of Parkinson's disease, pointing to a new strategy that could slow or stop the progression of the disease.  相似文献   
43.
Phosphorus cycle: A broken biogeochemical cycle   总被引:8,自引:0,他引:8  
Elser J  Bennett E 《Nature》2011,478(7367):29-31
  相似文献   
44.
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.  相似文献   
45.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
46.
47.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   
48.
49.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
50.
Metabolite-enabled eradication of bacterial persisters by aminoglycosides   总被引:1,自引:0,他引:1  
Allison KR  Brynildsen MP  Collins JJ 《Nature》2011,473(7346):216-220
Bacterial persistence is a state in which a sub-population of dormant cells, or 'persisters', tolerates antibiotic treatment. Bacterial persisters have been implicated in biofilms and in chronic and recurrent infections. Despite this clinical relevance, there are currently no viable means for eradicating persisters. Here we show that specific metabolic stimuli enable the killing of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) persisters with aminoglycosides. This potentiation is aminoglycoside-specific, it does not rely on growth resumption and it is effective in both aerobic and anaerobic conditions. It proceeds by the generation of a proton-motive force which facilitates aminoglycoside uptake. Our results demonstrate that persisters, although dormant, are primed for metabolite uptake, central metabolism and respiration. We show that aminoglycosides can be used in combination with specific metabolites to treat E. coli and S. aureus biofilms. Furthermore, we demonstrate that this approach can improve the treatment of chronic infections in a mouse urinary tract infection model. This work establishes a strategy for eradicating bacterial persisters that is based on metabolism, and highlights the importance of the metabolic environment to antibiotic treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号