首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15818篇
  免费   225篇
  国内免费   550篇
系统科学   1490篇
丛书文集   847篇
教育与普及   1987篇
理论与方法论   139篇
现状及发展   939篇
研究方法   1346篇
综合类   9803篇
自然研究   42篇
  2018年   44篇
  2017年   65篇
  2016年   62篇
  2015年   75篇
  2014年   145篇
  2013年   89篇
  2012年   743篇
  2011年   949篇
  2010年   267篇
  2009年   109篇
  2008年   781篇
  2007年   926篇
  2006年   1089篇
  2005年   1257篇
  2004年   1009篇
  2003年   1049篇
  2002年   772篇
  2001年   671篇
  2000年   839篇
  1999年   361篇
  1998年   136篇
  1997年   88篇
  1996年   88篇
  1995年   73篇
  1994年   101篇
  1993年   158篇
  1992年   133篇
  1991年   140篇
  1990年   127篇
  1989年   140篇
  1988年   180篇
  1987年   191篇
  1986年   229篇
  1985年   221篇
  1984年   238篇
  1983年   217篇
  1982年   220篇
  1981年   184篇
  1980年   152篇
  1979年   90篇
  1970年   70篇
  1964年   34篇
  1959年   227篇
  1958年   372篇
  1957年   280篇
  1956年   250篇
  1955年   235篇
  1954年   255篇
  1948年   59篇
  1946年   37篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
241.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   
242.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
243.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
244.
PTC124 targets genetic disorders caused by nonsense mutations   总被引:1,自引:0,他引:1  
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.  相似文献   
245.
246.
247.
Low beta diversity of herbivorous insects in tropical forests   总被引:1,自引:0,他引:1  
Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.  相似文献   
248.
Colombe Y  Steinmetz T  Dubois G  Linke F  Hunger D  Reichel J 《Nature》2007,450(7167):272-276
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.  相似文献   
249.
Space exploration: secrets of the martian soil   总被引:1,自引:0,他引:1  
Wu C 《Nature》2007,448(7155):742-744
  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号