首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21293篇
  免费   43篇
  国内免费   86篇
系统科学   131篇
丛书文集   306篇
教育与普及   47篇
理论与方法论   65篇
现状及发展   9304篇
研究方法   1042篇
综合类   10240篇
自然研究   287篇
  2013年   139篇
  2012年   361篇
  2011年   640篇
  2010年   120篇
  2009年   116篇
  2008年   383篇
  2007年   441篇
  2006年   441篇
  2005年   439篇
  2004年   462篇
  2003年   385篇
  2002年   390篇
  2001年   737篇
  2000年   658篇
  1999年   464篇
  1992年   405篇
  1991年   313篇
  1990年   336篇
  1989年   300篇
  1988年   297篇
  1987年   342篇
  1986年   326篇
  1985年   403篇
  1984年   345篇
  1983年   287篇
  1982年   231篇
  1981年   242篇
  1980年   301篇
  1979年   715篇
  1978年   557篇
  1977年   519篇
  1976年   416篇
  1975年   456篇
  1974年   639篇
  1973年   547篇
  1972年   537篇
  1971年   650篇
  1970年   857篇
  1969年   609篇
  1968年   534篇
  1967年   593篇
  1966年   518篇
  1965年   375篇
  1959年   197篇
  1958年   329篇
  1957年   252篇
  1956年   213篇
  1955年   175篇
  1954年   193篇
  1948年   151篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human -lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.Received 30 January 2004; received after revision 5 March 2004; accepted 16 March 2004  相似文献   
992.
993.
Alexander disease: putative mechanisms of an astrocytic encephalopathy   总被引:7,自引:1,他引:6  
Alexander disease (AXD) is the first primary astrocytic disorder. This encephalopathy is caused by dominant mutations in the glial fibrillary acidic protein (GFAP) gene, encoding the main intermediate filament of astrocyte. Pathologically, this neurodegenerative disease is characterised by dystrophic astrocytes containing intermediate filament aggregates associated with myelin abnormalities.More than 20 GFAP mutations have been reported. Many of them cluster in highly conserved regions between several intermediate filaments. Contrary to other intermediate filament-related diseases, AXD seems to be the consequence of a toxic gain of function induced by aggregates. This is supported by the phenotype of mice overexpressing human GFAP. Nevertheless, GFAP null mice display myelin abnormalities and blood-brain barrier dysfunction that are present in AXD.Given the pivotal role of astrocytes in brain physiology, there are many possibilities for astrocytes to dysfunction and to impair the functions of other cells. Physiopathological hypotheses are discussed in the frame of AXD.Received 11 April 2003; received after revision 22 July 2003; accepted 31 July 2003Both authors contributed equally to this work.  相似文献   
994.
DNA damage repair and transcription   总被引:4,自引:1,他引:3  
Double-strand breaks arise frequently in the course of endogenous - normal and pathological - cellular DNA metabolism or can result from exogenous agents such as ionizing radiation. It is generally accepted that these lesions represent one of the most severe types of DNA damage with respect to preservation of genomic integrity. Therefore, cells have evolved complex mechanisms that include cell-cycle arrest, activation of various genes, including those associated with DNA repair, and in certain cases induction of the apoptotic pathway to respond to double-strand breaks. In this review we discuss recent progress in our understanding of cellular responses to DNA double-strand breaks. In addition to an analysis of the current paradigms of detection, signaling and repair, insights into the significance of chromatin remodeling in the double-strand break-response pathways are provided.  相似文献   
995.
Gelsolin superfamily proteins: key regulators of cellular functions   总被引:10,自引:0,他引:10  
Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these proteins.  相似文献   
996.
LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.  相似文献   
997.
The kinesin-related protein HsEg5 plays essential roles in mitotic spindle dynamics. Although inhibition of HsEg5 has been suggested as an aid in cancer treatment, the effects of such inhibition on human cells have not been characterized. Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol. While both cell lines were similarly sensitive to taxol, AGS cells were more sensitive to monastrol. The differences in sensitivity were determined by the degree of inhibitory effect on cell proliferation, reversibility of monastrol-induced G2/M arrest, intracellular phenotypes and induction of apoptosis. In both cell lines, monastrol-induced apoptosis was accompanied by mitochondrial membrane depolarization and poly-ADP-ribose polymerase 1 cleavage. In AGS, but not HT29 cells, monastrol-induced apoptosis involved a prominent cleavage of procaspases 8 and 3. While in AGS cells, monastrol induced the formation of symmetric microtubule asters only, in HT29 cells, asymmetric asters were also formed, which may be related to specific HsEg5 functions in HT29 cells.Received 18 February 2004; received after revision 30 May 2004; accepted 16 June 2004  相似文献   
998.
Snake venom thrombin-like enzymes: from reptilase to now   总被引:12,自引:0,他引:12  
The snake venom thrombin-like enzymes (SVTLEs) comprise a number of serine proteases functionally and structurally related to thrombin. Until recently, only nine complete sequences of this subgroup of the serine protease family were known. Over the past 5 years, the primary structure of several SVTLEs has been characterized, and now this family includes several members. Of particular interest is their possible use in pathologies such as thrombosis. The aim of the present review is to summarize the state of the art concerning the evolutionary, structural and biological features of the SVTLEs.Received 16 August 2003; received after revision 26 September 2003; accepted 1 October 2003  相似文献   
999.
In the context of developing a safe genetic vaccination strategy we tested and studied globin-stabilized mRNA-based vaccination in mice. This vaccination strategy has the advantages of genetic vaccination (easy production, adaptability to any disease and inexpensive storage when lyophilized), but not the drawbacks of DNA vaccination (long-term uncontrolled expression of a transgene, possibility of integration into the host genome and possible induction of anti-DNA antibodies). We report here that injection of naked -globin untranslated region (UTR)-stabilized mRNA coding for -galactosidase is followed by detectable translation in vivo. In addition, we show that such a vaccination strategy primes a T helper 2 (Th2) type of response which can be enhanced and shifted to a Th1-type immune response by application of recombinant granulocyte/macrophage colony-stimulating factor 1 day after mRNA injection. Our data demonstrate that the administration of globin UTR-stabilized mRNA is a versatile vaccination strategy that can be manipulated to fit the requirement of antiviral, antibacterial or antitumor immunity.Received 14 June 2004; received after revision 19 July 2004; accepted 9 August 2004  相似文献   
1000.
Apoptosis is a morphologically distinct form of cell death. It is executed and regulated by several groups of proteins. Bcl-2 family proteins are the main regulators of the apoptotic process acting either to inhibit or promote it. More than 20 members of the family have been identified so far and most have two or more isoforms. Alternative splicing is one of the major mechanisms providing proteomic complexity and functional diversification of the Bcl-2 family proteins. Pro- and anti-apoptotic Bcl-2 family members should function in harmony for the regulation of the apoptosis machinery, and their relative levels are critical for cell fate. Any mechanism breaking down this harmony by changing the relative levels of these antagonistic proteins could contribute to many diseases, including cancer and neurodegenerative disorders. Recent studies have shown that manipulation of the alternative splicing mechanisms could provide an opportunity to restore the proper balance of these regulator proteins. This review summarises current knowledge on the alternative splicing products of Bcl-2-related genes and modulation of splicing mechanisms as a potential therapeutic approach.Received 5 January 2004; received after revision 31 March 2004; accepted 6 April 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号