首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17288篇
  免费   25篇
  国内免费   67篇
系统科学   123篇
丛书文集   288篇
教育与普及   43篇
理论与方法论   63篇
现状及发展   7398篇
研究方法   908篇
综合类   8294篇
自然研究   263篇
  2013年   112篇
  2012年   299篇
  2011年   566篇
  2010年   104篇
  2009年   99篇
  2008年   316篇
  2007年   360篇
  2006年   376篇
  2005年   376篇
  2004年   376篇
  2003年   323篇
  2002年   320篇
  2001年   609篇
  2000年   571篇
  1999年   388篇
  1992年   325篇
  1991年   264篇
  1990年   279篇
  1989年   253篇
  1988年   235篇
  1987年   280篇
  1986年   291篇
  1985年   319篇
  1984年   280篇
  1983年   222篇
  1982年   182篇
  1981年   195篇
  1980年   249篇
  1979年   566篇
  1978年   432篇
  1977年   425篇
  1976年   314篇
  1975年   349篇
  1974年   515篇
  1973年   437篇
  1972年   428篇
  1971年   519篇
  1970年   688篇
  1969年   484篇
  1968年   399篇
  1967年   487篇
  1966年   398篇
  1965年   282篇
  1959年   162篇
  1958年   268篇
  1957年   207篇
  1956年   180篇
  1955年   144篇
  1954年   150篇
  1948年   126篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
281.
Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0–2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.  相似文献   
282.
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole’s protective actions. Melatonin’s mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.  相似文献   
283.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
284.
Blood vessel regression is an essential process for ensuring blood vessel networks function at optimal efficiency and for matching blood supply to the metabolic needs of tissues as they change over time. Angiogenesis is the major mechanism by which new blood vessels are produced, but the vessel growth associated with angiogenesis must be complemented by remodeling and maturation events including the removal of redundant vessel segments and cells to fashion the newly forming vasculature into an efficient, hierarchical network. This review will summarize recent findings on the role that endothelial cell apoptosis plays in vascular remodeling during angiogenesis and in vessel regression more generally.  相似文献   
285.
286.
Scientific explanation is a perennial topic in philosophy of science, but the literature has fragmented into specialized discussions in different scientific disciplines. An increasing attention to scientific practice by philosophers is (in part) responsible for this fragmentation and has put pressure on criteria of adequacy for philosophical accounts of explanation, usually demanding some form of pluralism. This commentary examines the arguments offered by Fagan and Woody with respect to explanation and understanding in scientific practice. I begin by scrutinizing Fagan's concept of collaborative explanation, highlighting its distinctive advantages and expressing concern about several of its assumptions. Then I analyze Woody's attempt to reorient discussions of scientific explanation around functional considerations, elaborating on the wider implications of this methodological recommendation. I conclude with reflections on synergies and tensions that emerge when the two papers are juxtaposed and how these draw attention to critical issues that confront ongoing philosophical analyses of scientific explanation.  相似文献   
287.
288.
289.
The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial–mesenchymal transition. Other recent works have identified a novel role for the FHIT gene product, Fhit, as a genome “caretaker.” Loss of this caretaker function leads to nucleotide imbalance, spontaneous replication stress, and DNA breaks. Because Fhit loss-induced DNA damage is “checkpoint blind,” cells accumulate further DNA damage during subsequent cell cycles, accruing global genome instability that could facilitate oncogenic mutation acquisition and expedite clonal expansion. Loss of Fhit activity therefore induces a mutator phenotype. Evidence for FHIT as a mutator gene is discussed in light of these recent investigations of Fhit loss and subsequent genome instability.  相似文献   
290.
This article studies Man and Tiao's (2006) low‐order autoregressive fractionally integrated moving‐average (ARFIMA) approximation to Tsai and Chan's (2005b) limiting aggregate structure of the long‐memory process. In matching the autocorrelations, we demonstrate that the approximation works well, especially for larger d values. In computing autocorrelations over long lags for larger d value, using the exact formula one might encounter numerical problems. The use of the ARFIMA(0, d, d?1) model provides a useful alternative to compute the autocorrelations as a really close approximation. In forecasting future aggregates, we demonstrate the close performance of using the ARFIMA(0, d, d?1) model and the exact aggregate structure. In practice, this provides a justification for the use of a low‐order ARFIMA model in predicting future aggregates of long‐memory process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号