首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25906篇
  免费   42篇
  国内免费   92篇
系统科学   159篇
丛书文集   475篇
教育与普及   76篇
理论与方法论   111篇
现状及发展   11674篇
研究方法   1165篇
综合类   12003篇
自然研究   377篇
  2013年   182篇
  2012年   398篇
  2011年   784篇
  2010年   149篇
  2009年   136篇
  2008年   448篇
  2007年   497篇
  2006年   508篇
  2005年   523篇
  2004年   516篇
  2003年   466篇
  2002年   467篇
  2001年   789篇
  2000年   750篇
  1999年   494篇
  1992年   451篇
  1991年   381篇
  1990年   388篇
  1989年   378篇
  1988年   365篇
  1987年   397篇
  1986年   414篇
  1985年   494篇
  1984年   378篇
  1983年   327篇
  1982年   261篇
  1981年   284篇
  1980年   355篇
  1979年   857篇
  1978年   657篇
  1977年   654篇
  1976年   495篇
  1975年   534篇
  1974年   784篇
  1973年   669篇
  1972年   686篇
  1971年   767篇
  1970年   1042篇
  1969年   776篇
  1968年   709篇
  1967年   766篇
  1966年   661篇
  1965年   474篇
  1959年   266篇
  1958年   456篇
  1957年   352篇
  1956年   310篇
  1955年   263篇
  1954年   275篇
  1948年   215篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
311.
A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.  相似文献   
312.
313.
Smith CG  Aylward AD  Millward GH  Miller S  Moore LE 《Nature》2007,445(7126):399-401
The upper atmospheres of the four Solar System giant planets exhibit high temperatures that cannot be explained by the absorption of sunlight. In the case of Saturn the temperatures predicted by models of solar heating are approximately 200 K, compared to temperatures of approximately 400 K observed independently in the polar regions and at 30 degrees latitude. This unexplained 'energy crisis' represents a major gap in our understanding of these planets' atmospheres. An important candidate for the source of the missing energy is the magnetosphere, which injects energy mostly in the polar regions of the planet. This polar energy input is believed to be sufficient to explain the observed temperatures, provided that it is efficiently redistributed globally by winds, a process that is not well understood. Here we show, using a numerical model, that the net effect of the winds driven by the polar energy inputs is not to heat but to cool the low-latitude thermosphere. This surprising result allows us to rule out known polar energy inputs as the solution to the energy crisis at Saturn. There is either an unknown--and large--source of polar energy, or, more probably, some other process heats low latitudes directly.  相似文献   
314.
Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333-IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope. Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333-IRAS 4B a rich emission spectrum of H2O, at wavelengths 20-37 microm, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.  相似文献   
315.
316.
Mehta RS  Wainwright PC 《Nature》2007,449(7158):79-82
Most bony fishes rely on suction mechanisms to capture and transport prey. Once captured, prey are carried by water movement inside the oral cavity to a second set of jaws in the throat, the pharyngeal jaws, which manipulate the prey and assist in swallowing. Moray eels display much less effective suction-feeding abilities. Given this reduction in a feeding mechanism that is widespread and highly conserved in aquatic vertebrates, it is not known how moray eels swallow large fish and cephalopods. Here we show that the moray eel (Muraena retifera) overcomes reduced suction capacity by launching raptorial pharyngeal jaws out of its throat and into its oral cavity, where the jaws grasp the struggling prey animal and transport it back to the throat and into the oesophagus. This is the first described case of a vertebrate using a second set of jaws to both restrain and transport prey, and is the only alternative to the hydraulic prey transport reported in teleost fishes. The extreme mobility of the moray pharyngeal jaws is made possible by elongation of the muscles that control the jaws, coupled with reduction of adjacent gill-arch structures. The discovery that pharyngeal jaws can reach up from behind the skull to grasp prey in the oral jaws reveals a major innovation that may have contributed to the success of moray eels as apex predators hunting within the complex matrix of coral reefs. This alternative prey transport mode is mechanically similar to the ratcheting mechanisms used in snakes--a group of terrestrial vertebrates that share striking morphological, behavioural and ecological convergence with moray eels.  相似文献   
317.
Chan CS  Guzman JN  Ilijic E  Mercer JN  Rick C  Tkatch T  Meredith GE  Surmeier DJ 《Nature》2007,447(7148):1081-1086
Why dopamine-containing neurons of the brain's substantia nigra pars compacta die in Parkinson's disease has been an enduring mystery. Our studies suggest that the unusual reliance of these neurons on L-type Ca(v)1.3 Ca2+ channels to drive their maintained, rhythmic pacemaking renders them vulnerable to stressors thought to contribute to disease progression. The reliance on these channels increases with age, as juvenile dopamine-containing neurons in the substantia nigra pars compacta use pacemaking mechanisms common to neurons not affected in Parkinson's disease. These mechanisms remain latent in adulthood, and blocking Ca(v)1.3 Ca2+ channels in adult neurons induces a reversion to the juvenile form of pacemaking. Such blocking ('rejuvenation') protects these neurons in both in vitro and in vivo models of Parkinson's disease, pointing to a new strategy that could slow or stop the progression of the disease.  相似文献   
318.
319.
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IkappaB kinase (IKK)-beta-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-beta show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (T(H)2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-alpha, increased levels of CD4+ T-cell-derived interferon-gamma and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-beta in IECs to promote CD4+ T(H)2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-beta-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.  相似文献   
320.
Endophenotypes are heritable quantitative traits that are associated with disease liability, can be measured in both affected and unaffected individuals, and provide much greater power to localize and identify risk genes for mental illness than does affection status alone. Traditionally, endophenotypic markers for psychiatric illnesses include in vivo neuroanatomic and functional magnetic resonance imaging measurements and indices of neurocognitive abilities. However, neurocognitive and neuroimaging measures are by no means the only classes of endophenotypes that could be useful for identifying genes for mental illness. Given the advantages of endophenotype-based strategies for elucidating the genetic underpinnings of psychiatric disorders, it would seem prudent to develop a wide range of putative endophenotypes. In order for a measure to be considered a valid endophenotype, it must meet a number of criteria. Specifically, the trait must (1) have moderate to high heritability, (2) be associated with the illness, (3) be independent of clinical state, and (4) impairment must co-segregate with the illness within a family, with non-affected family members showing impairment relative to the general population. While each of these criteria is critical, the heritability and co-segregation requirements are really what differentiate an endophenotype from a simple biomarker. At this time, one requires an experimental design that includes families to demonstrate both heritability and co-segregation. The assertion that novel endophenotypes can not be fully established without family data does not preclude work in unrelated individuals, rather that unrelated samples will only be able to nominate potential candidate endophenotypes that subsequently need to be confirmed in family-based experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号