首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25906篇
  免费   42篇
  国内免费   92篇
系统科学   159篇
丛书文集   475篇
教育与普及   76篇
理论与方法论   111篇
现状及发展   11674篇
研究方法   1165篇
综合类   12003篇
自然研究   377篇
  2013年   182篇
  2012年   398篇
  2011年   784篇
  2010年   149篇
  2009年   136篇
  2008年   448篇
  2007年   497篇
  2006年   508篇
  2005年   523篇
  2004年   516篇
  2003年   466篇
  2002年   467篇
  2001年   789篇
  2000年   750篇
  1999年   494篇
  1992年   451篇
  1991年   381篇
  1990年   388篇
  1989年   378篇
  1988年   365篇
  1987年   397篇
  1986年   414篇
  1985年   494篇
  1984年   378篇
  1983年   327篇
  1982年   261篇
  1981年   284篇
  1980年   355篇
  1979年   857篇
  1978年   657篇
  1977年   654篇
  1976年   495篇
  1975年   534篇
  1974年   784篇
  1973年   669篇
  1972年   686篇
  1971年   767篇
  1970年   1042篇
  1969年   776篇
  1968年   709篇
  1967年   766篇
  1966年   661篇
  1965年   474篇
  1959年   266篇
  1958年   456篇
  1957年   352篇
  1956年   310篇
  1955年   263篇
  1954年   275篇
  1948年   215篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
261.

This article analyzes the angular spacing of the degree marks on the zodiac scale of the Antikythera mechanism and demonstrates that over the entire preserved 88° of the zodiac, the marks are systematically placed too close together to be consistent with a uniform distribution over 360°. Thus, in some other part of the zodiac scale (not preserved), the degree marks have been spaced farther apart. By contrast, the day marks on the Egyptian calendar scale are spaced uniformly, apart from minor errors. A solar equation of center is apparent which rises by nearly 2.7° over the preserved portion of the zodiac. The placement of the degree marks indicates that, in the preserved portion of the zodiac, the Sun was considered to run at a uniform pace of about 30° per synodic month, which is consistent with the Sun’s speed in the fast zone of the Babylonian solar theory of System A.

  相似文献   
262.
The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial–mesenchymal transition. Other recent works have identified a novel role for the FHIT gene product, Fhit, as a genome “caretaker.” Loss of this caretaker function leads to nucleotide imbalance, spontaneous replication stress, and DNA breaks. Because Fhit loss-induced DNA damage is “checkpoint blind,” cells accumulate further DNA damage during subsequent cell cycles, accruing global genome instability that could facilitate oncogenic mutation acquisition and expedite clonal expansion. Loss of Fhit activity therefore induces a mutator phenotype. Evidence for FHIT as a mutator gene is discussed in light of these recent investigations of Fhit loss and subsequent genome instability.  相似文献   
263.
Eustigmaeus floridensis sp. nov. is described and illustrated based on female specimens collected from citrus trees in Florida, USA. The new species is closely related to Eustigmaeus arcuata, Eustigmaeus segnis and Eustigmaeus microsegnis, all known to occur in Florida. Eustigmaeus floridensis sp. nov. can be distinguished by larger dimples associated with setae sce, d2 and e1 containing at least four or more vacuoles centrally; dorsal body setae broadly lanceolate and feather-like, except c2, which is slender; anogenital area with striae and one pair of serrated aggenital (ag1) and three pairs of serrated pseudanal (ps1?3) setae. A key to the Eustigmaeus species known to occur across USA is also provided.  相似文献   
264.
265.
266.
正Published online:14 March 2014óScience China Press and Springer-Verlag Berlin Heidelberg 2014Erratum to:Chin.Sci.Bull.(2014)59(5–6):528–532DOI 10.1007/s11434-013-0060-1In the original publication of this paper,the first name and the last name of the first author has been documented  相似文献   
267.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
268.

The study of an electric charge in hyperbolic motion is an important aspect of Minkowski’s geometrical formulation of electrodynamics. In “Space and Time”, his last publication before his premature death, Minkowski gives a brief geometrical recipe for calculating the four-force with which an electric charge acts on another electric charge. The subsequent work of Born, Sommerfeld, Laue, and Pauli filled in the missing derivation details. Here, we bring together these early contributions, in an effort to provide a more modern, accessible, and unified exposition of the early history of the electric charge in hyperbolic motion.

  相似文献   
269.
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This “design feature” of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.  相似文献   
270.
On-chip natural assembly of silicon photonic bandgap crystals.   总被引:20,自引:0,他引:20  
Y A Vlasov  X Z Bo  J C Sturm  D J Norris 《Nature》2001,414(6861):289-293
Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号