首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4619篇
  免费   29篇
  国内免费   49篇
系统科学   121篇
丛书文集   232篇
教育与普及   162篇
理论与方法论   5篇
现状及发展   400篇
研究方法   791篇
综合类   2978篇
自然研究   8篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2014年   16篇
  2013年   15篇
  2012年   366篇
  2011年   448篇
  2010年   81篇
  2009年   32篇
  2008年   294篇
  2007年   327篇
  2006年   350篇
  2005年   380篇
  2004年   325篇
  2003年   304篇
  2002年   257篇
  2001年   216篇
  2000年   312篇
  1999年   101篇
  1998年   12篇
  1997年   16篇
  1996年   12篇
  1995年   7篇
  1994年   15篇
  1993年   18篇
  1992年   26篇
  1991年   26篇
  1990年   31篇
  1989年   16篇
  1988年   16篇
  1987年   21篇
  1986年   14篇
  1985年   24篇
  1984年   21篇
  1983年   16篇
  1982年   16篇
  1981年   18篇
  1980年   11篇
  1979年   9篇
  1977年   15篇
  1971年   10篇
  1970年   28篇
  1966年   5篇
  1959年   49篇
  1958年   99篇
  1957年   79篇
  1956年   58篇
  1955年   50篇
  1954年   59篇
  1948年   18篇
排序方式: 共有4697条查询结果,搜索用时 78 毫秒
171.
172.
Nanoparticles (NPs) comprised of nanoengineered complexes are providing new opportunities for enabling targeted delivery of a range of therapeutics and combinations. A range of functionalities can be included within a nanoparticle complex, including surface chemistry that allows attachment of cell-specific ligands for targeted delivery, surface coatings to increase circulation times for enhanced bioavailability, specific materials on the surface or in the nanoparticle core that enable storage of a therapeutic cargo until the target site is reached, and materials sensitive to local or remote actuation cues that allow controlled delivery of therapeutics to the target cells. However, despite the potential benefits of NPs as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of NP materials, as well as their size and shape. The need to validate each NP for safety and efficacy with each therapeutic compound or combination of therapeutics is an enormous challenge, which forces industry to focus mainly on those nanoparticle materials where data on safety and efficacy already exists, i.e., predominantly polymer NPs. However, the enhanced functionality affordable by inclusion of metallic materials as part of nanoengineered particles provides a wealth of new opportunity for innovation and new, more effective, and safer therapeutics for applications such as cancer and cardiovascular diseases, which require selective targeting of the therapeutic to maximize effectiveness while avoiding adverse effects on non-target tissues.  相似文献   
173.
SIRT1, an ubiquitous NAD(+)-dependent deacetylase that plays a role in biological processes such as longevity and stress response, is significantly activated in response to reactive oxygen species (ROS) production. Resveratrol (Resv), an important activator of SIRT1, has been shown to exert major health benefits in diseases associated with oxidative stress. In ischemia-reperfusion (IR) injury, a major role has been attributed to the mitogen-activated protein kinase (MAPK) pathway, which is upregulated in response to a variety of stress stimuli, including oxidative stress. In neonatal rat ventricular cardiomyocytes subjected to simulated IR, the effect of Resv-induced SIRT1 activation and the relationships with the MAPK pathway were investigated. Resv-induced SIRT1 overexpression protected cardiomyocytes from oxidative injury, mitochondrial dysfunction, and cell death induced by IR. For the first time, we demonstrate that SIRT1 overexpression positively affects the MAPK pathway-via Akt/ASK1 signaling-by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation. These results reveal a new protective mechanism elicited by Resv-induced SIRT1 activation in IR tissues and suggest novel potential therapeutic targets to manage IR-induced cardiac dysfunction.  相似文献   
174.
175.
Successful development of sequence-specific siRNA (small interfering RNA)-based drugs requires an siRNA design that functions consistently in different organisms. Utilizing the CAPSID program previously developed by our group, we here designed siRNAs against mammalian target of rapamycin (mTOR) that are entirely complementary among various species and investigated their multispecies-compatible gene-silencing properties. The mTOR siRNAs markedly reduced mTOR expression at both the mRNA and protein levels in human, mouse, and monkey cell lines. The reduction in mTOR expression resulted in inactivation of both mTOR complex I and II signaling pathways, as confirmed by reduced phosphorylation of p70S6K (70-kDa ribosomal protein S6 kinase), 4EBP1 (eIF4E-binding protein 1), and AKT, and nuclear accumulation of FOXO1 (forkhead box O1), with consequent cell-cycle arrest, proliferation inhibition, and autophagy activation. Moreover, interfering with mTOR activity in vivo using mTOR small-hairpin RNA-expressing recombinant adeno-associated virus led to significant antitumor effects in xenograft and allograft models. Thus, the present study demonstrates that cross-species siRNA successfully silences its target and readily produces multispecies-compatible phenotypic alterations-antitumor effects in the case of mTOR siRNA. Application of cross-species siRNA should greatly facilitate the development of siRNA-based therapeutic agents.  相似文献   
176.
177.
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.  相似文献   
178.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
179.
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA.  相似文献   
180.
Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype   总被引:1,自引:0,他引:1  
The chromosome 17q21.31 deletion syndrome is a genomic disorder characterized by highly distinctive facial features, moderate-to-severe intellectual disability, hypotonia and friendly behavior. Here, we show that de novo loss-of-function mutations in KANSL1 (also called KIAA1267) cause a full del(17q21.31) phenotype in two unrelated individuals that lack deletion at 17q21.31. These findings indicate that 17q21.31 deletion syndrome is a monogenic disorder caused by haploinsufficiency of KANSL1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号