首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25954篇
  免费   41篇
  国内免费   92篇
系统科学   160篇
丛书文集   475篇
教育与普及   76篇
理论与方法论   110篇
现状及发展   11676篇
研究方法   1166篇
综合类   12047篇
自然研究   377篇
  2013年   184篇
  2012年   397篇
  2011年   785篇
  2010年   150篇
  2009年   136篇
  2008年   449篇
  2007年   498篇
  2006年   508篇
  2005年   523篇
  2004年   516篇
  2003年   464篇
  2002年   469篇
  2001年   788篇
  2000年   751篇
  1999年   494篇
  1992年   451篇
  1991年   380篇
  1990年   388篇
  1989年   378篇
  1988年   365篇
  1987年   397篇
  1986年   414篇
  1985年   494篇
  1984年   378篇
  1983年   327篇
  1982年   261篇
  1981年   284篇
  1980年   355篇
  1979年   857篇
  1978年   658篇
  1977年   654篇
  1976年   495篇
  1975年   534篇
  1974年   784篇
  1973年   669篇
  1972年   686篇
  1971年   767篇
  1970年   1042篇
  1969年   776篇
  1968年   709篇
  1967年   766篇
  1966年   661篇
  1965年   474篇
  1959年   266篇
  1958年   456篇
  1957年   352篇
  1956年   310篇
  1955年   263篇
  1954年   275篇
  1948年   215篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
871.
872.
The gene coding for the amyloid protein, a component of neuritic plaques found in brain tissue from patients with Alzheimer's disease, has been localized to chromosome 21, and neighbouring polymorphic DNA markers segregate with Alzheimer's disease in several large families. These data, and the association of Alzheimer's disease with Down's syndrome, suggest that overproduction of the amyloid protein, or production of an abnormal variant of the protein, may be the underlying pathological change causing Alzheimer's disease. We have identified a restriction fragment length polymorphism of the A4-amyloid gene, and find recombinants in two Alzheimer's disease families between Alzheimer's disease and the A4-amyloid locus. This demonstrates that the gene for plaque core A4-amyloid cannot be the locus of a defect causing Alzheimer's disease in these families. These data indicate that alterations in the plaque core amyloid gene cannot explain the molecular pathology for all cases of Alzheimer's disease.  相似文献   
873.
W Reik  A Collick  M L Norris  S C Barton  M A Surani 《Nature》1987,328(6127):248-251
Mouse embryogenesis relies on the presence of both the maternal and the paternal genome for development to term. It has been proposed that specific modifications are imprinted onto the chromosomes during gametogenesis; these modifications are stably propagated, and their expression results in distinct and complementary contributions of the two parental genomes to the development of the embryo and the extraembryonic membranes. Genetic data further suggest that a substantial proportion of the genome could be subject to chromosomal imprinting, the molecular nature of which is unknown. We used random DNA insertions in transgenic mice to probe the genome for modified regions. The DNA methylation patterns of transgenic alleles were compared after transmission from mother or father in seven mouse strains carrying autosomal insertions of the same transgenic marker. One of these loci showed a clear difference in DNA methylation specific for its parental origin, with the paternally inherited copy being relatively undermethylated. This difference was observed in embryos on day 10 of gestation, but not in their extraembryonic membranes. Moreover, the methylation pattern was faithfully reversed upon each germline transmission to the opposite sex. Our findings provide evidence for heritable molecular differences between maternally and paternally derived alleles on mouse chromosomes.  相似文献   
874.
Catalysis of protein folding by prolyl isomerase   总被引:9,自引:0,他引:9  
K Lang  F X Schmid  G Fischer 《Nature》1987,329(6136):268-270
Rates of protein folding reactions vary considerably. Some denatured proteins regain the native conformation within milliseconds or seconds, whereas others refold very slowly in the time range of minutes or hours. Varying folding rates are observed not only for different proteins, but can also be detected for single polypeptide species. This originates from the co-existence of fast- and slow-folding forms of the unfolded protein, which regain the native state with different rates. The proline hypothesis provides a plausible explanation for this heterogeneity. It assumes that the slow-folding molecules possess non-native isomers of peptide bonds between proline and another residue, and that crucial steps in the refolding of the slow-folding molecules are limited in rate by the slow reisomerization of such incorrect proline peptide bonds. Recently the enzyme peptidyl-prolyl cis-trans isomerase (PPIase) was discovered and purified from pig kidney. It catalyses efficiently the cis in equilibrium trans isomerization of proline imidic peptide bonds in oligopeptides. Here we show that it also catalyses slow steps in the refolding of a number of proteins of which fast- and slow-folding species have been observed and where it was suggested that proline isomerization was involved in slow refolding. The efficiency of catalysis depends on the accessibility for the isomerase of the particular proline peptide bonds in the refolding protein chain.  相似文献   
875.
876.
M Hafner  C Petzelt 《Nature》1987,330(6145):264-266
Calcium ions are important in the regulation of mitotic apparatus assembly and in the control of chromosome movement. Changes in intracellular free calcium concentration, [Ca2+]i are achieved by an intracellular calcium-transport system which is highly conserved in different cell types. A membrane-bound protein of relative molecular mass (Mr) 46,000 (46K) is part of this transport system and has been implicated in the regulation of the [Ca2+]i changes associated with the course of mitosis. A monoclonal antibody against this 46K protein inhibits Ca2+-uptake into isolated Ca2+-sequestering membranes and specifically labels membranes associated with the mitotic apparatus of sea urchin embryos. Here we investigate the relationship between the intracellular calcium transport system and mitosis by injection of this monoclonal antibody into living mitotic sea urchin embryos. We find that after injection the intracellular free calcium increases up to 10(-6) M, the mitotic apparatus is rapidly destroyed and the cell is irreversibly blocked in its development.  相似文献   
877.
878.
Astrocytes induce blood-brain barrier properties in endothelial cells   总被引:53,自引:0,他引:53  
R C Janzer  M C Raff 《Nature》1987,325(6101):253-257
The highly impermeable tight junctions between endothelial cells forming the capillaries and venules in the central nervous system (CNS) of higher vertebrates are thought to be responsible for the blood-brain barrier that impedes the passive diffusion of solutes from the blood into the extracellular space of the CNS. The ability of CNS endothelial cells to form a blood-brain barrier is not intrinsic to these cells but instead is induced by the CNS environment: Stewart and Wiley demonstrated that when avascular tissue from 3-day-old quail brain is transplanted into the coelomic cavity of chick embryos, the chick endothelial cells that vascularize the quail brain grafts form a competent blood-brain barrier; on the other hand, when avascular embryonic quail coelomic grafts are transplanted into embryonic chick brain, the chick endothelial cells that invade the mesenchymal tissue grafts form leaky capillaries and venules. It is, however, not known which cells in the CNS are responsible for inducing endothelial cells to form the tight junctions characteristic of the blood-brain barrier. Astrocytes are the most likely candidates since their processes form endfeet that collectively surround CNS microvessels. In this report we provide direct evidence that astrocytes are capable of inducing blood-brain barrier properties in non-neural endothelial cells in vivo.  相似文献   
879.
Inequality in mutation rates of the two strands of DNA   总被引:4,自引:0,他引:4  
C I Wu  N Maeda 《Nature》1987,327(6118):169-170
As the mechanisms for replicating the two strands of duplex DNA differ it is, in principle, possible for the mutation rates to differ depending on which strand is being copied. In the absence of selection this would lead to a difference in the measured rate of a particular base substitution, such as T to C, depending on which DNA strand was analysed to determine the rate. Thus a change such as T to C on one DNA strand results from either a direct T-to-C mutation on that strand or an A-to-G mutation on the complementary strand; for the other strand the situation is reversed, and it can be seen that different processes are responsible for the two cases, allowing for asymmetry in substitution rate. We have tested whether such asymmetry indeed occurs by studying equivalent sequences from the beta-globin complexes of six species of primate. Our results reveal an asymmetry in substitution rates consistent with predictions based on strand-inequalities in mutation rates. Our sequence comparisons also allow us to make predictions about the positions of replication origins and the replication error rates of one strand relative to the other.  相似文献   
880.
Peptide aptamers have emerged as powerful new tools for molecular medicine. They can specifically bind to and functionally inactivate a given target molecule under intracellular conditions. Typically, peptide aptamers are generated by screening a randomized peptide expression library, displayed from the Escherichia coli thioredoxin A (TrxA) protein. Here, we transferred peptide moieties from defined TrxA-based peptide aptamers to alternative scaffold proteins, such as the green fluorescent protein and staphylococcal nuclease. Yeast and mammalian two-hybrid assays as well as in vitro binding analyses show that the TrxA scaffold can be a major determinant for the binding of peptide aptamers. In addition, we demonstrate that TrxA can correctly display peptide sequences that correspond to the binding domains of natural interaction partners. Therefore, sequence analyses of TrxA-based peptide aptamers, isolated by two-hybrid screening from randomized expression libraries, should also be useful to find cellular binding partners for a given target protein, by homology. Received 1 August 2002; received after revision 17 September 2002; accepted 19 September 2002 RID="*" ID="*"Corresponding author.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号