首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   1篇
  国内免费   1篇
系统科学   6篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   8篇
现状及发展   78篇
研究方法   62篇
综合类   250篇
自然研究   29篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   37篇
  2011年   70篇
  2010年   6篇
  2009年   6篇
  2008年   24篇
  2007年   32篇
  2006年   35篇
  2005年   34篇
  2004年   30篇
  2003年   20篇
  2002年   22篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1995年   4篇
  1994年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1977年   5篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1966年   5篇
  1965年   4篇
  1961年   1篇
  1956年   2篇
  1954年   1篇
  1945年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
311.
Electrical conduction through molecules depends critically on the delocalization of the molecular electronic orbitals and their connection to the metallic contacts. Thiolated (- SH) conjugated organic molecules are therefore considered good candidates for molecular conductors: in such molecules, the orbitals are delocalized throughout the molecular backbone, with substantial weight on the sulphur-metal bonds. However, their relatively small size, typically approximately 1 nm, calls for innovative approaches to realize a functioning single-molecule device. Here we report an approach for contacting a single molecule, and use it to study the effect of localizing groups within a conjugated molecule on the electrical conduction. Our method is based on synthesizing a dimer structure, consisting of two colloidal gold particles connected by a dithiolated short organic molecule, and electrostatically trapping it between two metal electrodes. We study the electrical conduction through three short organic molecules: 4,4'-biphenyldithiol (BPD), a fully conjugated molecule; bis-(4-mercaptophenyl)-ether (BPE), in which the conjugation is broken at the centre by an oxygen atom; and 1,4-benzenedimethanethiol (BDMT), in which the conjugation is broken near the contacts by a methylene group. We find that the oxygen in BPE and the methylene groups in BDMT both suppress the electrical conduction relative to that in BPD.  相似文献   
312.
Regulation of receptor function by cholesterol   总被引:8,自引:0,他引:8  
Cholesterol influences many of the biophysical properties of membranes and is nonrandomly distributed between cellular organelles, subdomains of membranes, and leaflets of the membrane bilayer. In combination with the high dynamics of cholesterol distribution, this offers many possibilities for regulation of membrane-embedded receptors. Depending on the receptor, cholesterol can have a strong influence on the affinity state, on the binding capacity, and on signal transduction. Most important, cholesterol may stabilize receptors in defined conformations related to their biological functions. This may occur by direct molecular interaction between cholesterol and receptors. In this review, we discuss the functional dependence of the nicotinic acetylcholine receptor as well as different G protein-coupled receptors on the presence of cholesterol.  相似文献   
313.
314.
Mutations in NR4A2 associated with familial Parkinson disease   总被引:17,自引:0,他引:17  
  相似文献   
315.
316.
Chacron MJ  Doiron B  Maler L  Longtin A  Bastian J 《Nature》2003,423(6935):77-81
Animals have developed stereotyped communication calls to which specific sensory neurons are well tuned. These communication calls must be discriminated from environmental signals such as those produced by prey. Sensory systems might have evolved neural circuitry to encode both categories. In weakly electric fish, prey and communication signals differ in their spatial extent and frequency content. Here we show that stimuli of different spatial extents mimicking prey and communication signals cause a switch in the frequency tuning and spike-timing precision of electrosensory pyramidal neurons, resulting in the selective and optimal encoding of both stimulus categories. As in other sensory systems, pyramidal neurons respond only to stimuli located within a restricted region of space known as the classical receptive field (CRF). In some systems, stimulation outside the CRF but within a non-classical receptive field (nCRF) can modulate the neural response to CRF stimulation even though nCRF stimulation alone fails to elicit responses. We show that pyramidal neurons possess a nCRF and that it can modulate the response to CRF stimuli to induce this neurobiological switch in frequency tuning.  相似文献   
317.
Kim SJ  Kim YS  Yuan JP  Petralia RS  Worley PF  Linden DJ 《Nature》2003,426(6964):285-291
Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre-Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.  相似文献   
318.
Distinct molecular mechanism for initiating TRAF6 signalling   总被引:20,自引:0,他引:20  
Tumour-necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is the only TRAF family member that participates in signal transduction of both the TNF receptor (TNFR) superfamily and the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) superfamily; it is important for adaptive immunity, innate immunity and bone homeostasis. Here we report crystal structures of TRAF6, alone and in complex with TRAF6-binding peptides from CD40 and TRANCE-R (also known as RANK), members of the TNFR superfamily, to gain insight into the mechanism by which TRAF6 mediates several signalling cascades. A 40 degrees difference in the directions of the bound peptides in TRAF6 and TRAF2 shows that there are marked structural differences between receptor recognition by TRAF6 and other TRAFs. The structural determinant of the petide TRAF6 interaction reveals a Pro-X-Glu-X-X-(aromatic/acidic residue) TRAF6-binding motif, which is present not only in CD40 and TRANCE-R but also in the three IRAK adapter kinases for IL-1R/TLR signalling. Cell-permeable peptides with the TRAF6-binding motif inhibit TRAF6 signalling, which indicates their potential as therapeutic modulators. Our studies identify a universal mechanism by which TRAF6 regulates several signalling cascades in adaptive immunity, innate immunity and bone homeostasis.  相似文献   
319.
The ability of human immunodeficiency virus (HIV-1) to persist and cause AIDS is dependent on its avoidance of antibody-mediated neutralization. The virus elicits abundant, envelope-directed antibodies that have little neutralization capacity. This lack of neutralization is paradoxical, given the functional conservation and exposure of receptor-binding sites on the gp120 envelope glycoprotein, which are larger than the typical antibody footprint and should therefore be accessible for antibody binding. Because gp120-receptor interactions involve conformational reorganization, we measured the entropies of binding for 20 gp120-reactive antibodies. Here we show that recognition by receptor-binding-site antibodies induces conformational change. Correlation with neutralization potency and analysis of receptor-antibody thermodynamic cycles suggested a receptor-binding-site 'conformational masking' mechanism of neutralization escape. To understand how such an escape mechanism would be compatible with virus-receptor interactions, we tested a soluble dodecameric receptor molecule and found that it neutralized primary HIV-1 isolates with great potency, showing that simultaneous binding of viral envelope glycoproteins by multiple receptors creates sufficient avidity to compensate for such masking. Because this solution is available for cell-surface receptors but not for most antibodies, conformational masking enables HIV-1 to maintain receptor binding and simultaneously to resist neutralization.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号