首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16776篇
  免费   42篇
  国内免费   50篇
系统科学   86篇
丛书文集   108篇
教育与普及   31篇
理论与方法论   62篇
现状及发展   5856篇
研究方法   874篇
综合类   9510篇
自然研究   341篇
  2013年   203篇
  2012年   291篇
  2011年   644篇
  2010年   122篇
  2009年   54篇
  2008年   322篇
  2007年   392篇
  2006年   383篇
  2005年   359篇
  2004年   344篇
  2003年   324篇
  2002年   333篇
  2001年   692篇
  2000年   677篇
  1999年   370篇
  1992年   343篇
  1991年   273篇
  1990年   297篇
  1989年   316篇
  1988年   285篇
  1987年   268篇
  1986年   290篇
  1985年   311篇
  1984年   270篇
  1983年   245篇
  1982年   203篇
  1981年   188篇
  1980年   211篇
  1979年   502篇
  1978年   392篇
  1977年   365篇
  1976年   302篇
  1975年   348篇
  1974年   497篇
  1973年   376篇
  1972年   387篇
  1971年   491篇
  1970年   607篇
  1969年   413篇
  1968年   448篇
  1967年   378篇
  1966年   384篇
  1965年   259篇
  1959年   135篇
  1958年   225篇
  1957年   162篇
  1956年   115篇
  1955年   115篇
  1954年   110篇
  1948年   89篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
301.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
302.
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA.  相似文献   
303.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   
304.
Strong signatures of positive selection at newly arising genetic variants are well documented in humans, but this form of selection may not be widespread in recent human evolution. Because many human traits are highly polygenic and partly determined by common, ancient genetic variation, an alternative model for rapid genetic adaptation has been proposed: weak selection acting on many pre-existing (standing) genetic variants, or polygenic adaptation. By studying height, a classic polygenic trait, we demonstrate the first human signature of widespread selection on standing variation. We show that frequencies of alleles associated with increased height, both at known loci and genome wide, are systematically elevated in Northern Europeans compared with Southern Europeans (P < 4.3 × 10(-4)). This pattern mirrors intra-European height differences and is not confounded by ancestry or other ascertainment biases. The systematic frequency differences are consistent with the presence of widespread weak selection (selection coefficients ~10(-3)-10(-5) per allele) rather than genetic drift alone (P < 10(-15)).  相似文献   
305.
Enucleated oocytes have the distinctive ability to reprogram somatic nuclei back to totipotency. Here, we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer, such as germline-associated promoters, as well as unique limitations that include certain repetitive element classes.  相似文献   
306.
Human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.  相似文献   
307.
308.
309.
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.  相似文献   
310.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号