首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   0篇
  国内免费   2篇
理论与方法论   1篇
现状及发展   23篇
研究方法   37篇
综合类   148篇
自然研究   13篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   31篇
  2011年   43篇
  2010年   4篇
  2008年   18篇
  2007年   26篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   11篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1968年   1篇
  1966年   1篇
  1957年   1篇
排序方式: 共有222条查询结果,搜索用时 46 毫秒
61.
p53 mutant mice that display early ageing-associated phenotypes.   总被引:56,自引:0,他引:56  
The p53 tumour suppressor is activated by numerous stressors to induce apoptosis, cell cycle arrest, or senescence. To study the biological effects of altered p53 function, we generated mice with a deletion mutation in the first six exons of the p53 gene that express a truncated RNA capable of encoding a carboxy-terminal p53 fragment. This mutation confers phenotypes consistent with activated p53 rather than inactivated p53. Mutant (p53+/m) mice exhibit enhanced resistance to spontaneous tumours compared with wild-type (p53+/+) littermates. As p53+/m mice age, they display an early onset of phenotypes associated with ageing. These include reduced longevity, osteoporosis, generalized organ atrophy and a diminished stress tolerance. A second line of transgenic mice containing a temperature-sensitive mutant allele of p53 also exhibits early ageing phenotypes. These data suggest that p53 has a role in regulating organismal ageing.  相似文献   
62.
We argue against claims that the classical ? → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ? → 0 limit. We then use the tools of category theory to demonstrate one way that this reduction is explanatory: it illustrates a sense in which the structure of quantum mechanics determines that of classical mechanics.  相似文献   
63.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 x 10(-8)). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 x 10(-11), overall P = 4 x 10(-16), including the genome-wide association data). We also observed the association in children (P = 1 x 10(-6), N = 6,827) and a tall/short case-control study (P = 4 x 10(-6), N = 3,207). We estimate that rs1042725 explains approximately 0.3% of population variation in height (approximately 0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitativetraits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.  相似文献   
64.
More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping of 70 rare and low-frequency protein-altering variants in nine independent case-control series (16,054 Crohn's disease cases, 12,153 ulcerative colitis cases and 17,575 healthy controls), we identified four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association with a protective splice variant in CARD9 (P < 1 × 10(-16), odds ratio ≈ 0.29) and additional associations with coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by identifying new, rare and probably functional variants that could aid functional experiments and predictive models.  相似文献   
65.
Tumor heterogeneity is a major barrier to effective cancer diagnosis and treatment. We recently identified cancer-specific differentially DNA-methylated regions (cDMRs) in colon cancer, which also distinguish normal tissue types from each other, suggesting that these cDMRs might be generalized across cancer types. Here we show stochastic methylation variation of the same cDMRs, distinguishing cancer from normal tissue, in colon, lung, breast, thyroid and Wilms' tumors, with intermediate variation in adenomas. Whole-genome bisulfite sequencing shows these variable cDMRs are related to loss of sharply delimited methylation boundaries at CpG islands. Furthermore, we find hypomethylation of discrete blocks encompassing half the genome, with extreme gene expression variability. Genes associated with the cDMRs and large blocks are involved in mitosis and matrix remodeling, respectively. We suggest a model for cancer involving loss of epigenetic stability of well-defined genomic domains that underlies increased methylation variability in cancer that may contribute to tumor heterogeneity.  相似文献   
66.
DNA methyltransferase 1 (DNMT1) is crucial for maintenance of methylation, gene regulation and chromatin stability. DNA mismatch repair, cell cycle regulation in post-mitotic neurons and neurogenesis are influenced by DNA methylation. Here we show that mutations in DNMT1 cause both central and peripheral neurodegeneration in one form of hereditary sensory and autonomic neuropathy with dementia and hearing loss. Exome sequencing led to the identification of DNMT1 mutation c.1484A>G (p.Tyr495Cys) in two American kindreds and one Japanese kindred and a triple nucleotide change, c.1470-1472TCC>ATA (p.Asp490Glu-Pro491Tyr), in one European kindred. All mutations are within the targeting-sequence domain of DNMT1. These mutations cause premature degradation of mutant proteins, reduced methyltransferase activity and impaired heterochromatin binding during the G2 cell cycle phase leading to global hypomethylation and site-specific hypermethylation. Our study shows that DNMT1 mutations cause the aberrant methylation implicated in complex pathogenesis. The discovered DNMT1 mutations provide a new framework for the study of neurodegenerative diseases.  相似文献   
67.
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.  相似文献   
68.
The glycolipid specific Drosophila melanogaster β1,4-N-acetylgalactosaminyltransferase B (β4GalNAcTB) depends on a zinc finger DHHC protein family member named GalNAcTB pilot (GABPI) for activity and translocation to the Golgi. The six-membrane spanning protein actually lacks the cysteine in the cytoplasmic DHHC motif, displaying DHHS instead. Here we show that the whole conserved region around the DHHS sequence, which is essential for palmitoylation in DHHC proteins, is not required for GABPI to interact with β4GalNAcTB. In contrast, the two luminal loops between transmembrane domain 3–4 and 5–6 contain conserved amino acids, which are crucial for activity. Besides the dependence on GABPI, β4GalNAcTB requires its exceptional short stem region for activity. A few hydrophobic amino acids positioned close to the transmembrane domain are essential for the interaction with GABPI. Along with its catalytic domain, β4GalNAcTB, thus, requires an area in its own stem region and two small luminal loops of GABPI as "add-on" domains. Moreover, some inactive GABPI mutants could be rescued by fusion with β4GalNAcTB, indicating their importance in direct GABPI-β4GalNAcTB interaction.  相似文献   
69.
To identify rheumatoid arthritis risk loci in European populations, we conducted a meta-analysis of two published genome-wide association (GWA) studies totaling 3,393 cases and 12,462 controls. We genotyped 31 top-ranked SNPs not previously associated with rheumatoid arthritis in an independent replication of 3,929 autoantibody-positive rheumatoid arthritis cases and 5,807 matched controls from eight separate collections. We identified a common variant at the CD40 gene locus (rs4810485, P = 0.0032 replication, P = 8.2 x 10(-9) overall, OR = 0.87). Along with other associations near TRAF1 (refs. 2,3) and TNFAIP3 (refs. 4,5), this implies a central role for the CD40 signaling pathway in rheumatoid arthritis pathogenesis. We also identified association at the CCL21 gene locus (rs2812378, P = 0.00097 replication, P = 2.8 x 10(-7) overall), a gene involved in lymphocyte trafficking. Finally, we identified evidence of association at four additional gene loci: MMEL1-TNFRSF14 (rs3890745, P = 0.0035 replication, P = 1.1 x 10(-7) overall), CDK6 (rs42041, P = 0.010 replication, P = 4.0 x 10(-6) overall), PRKCQ (rs4750316, P = 0.0078 replication, P = 4.4 x 10(-6) overall), and KIF5A-PIP4K2C (rs1678542, P = 0.0026 replication, P = 8.8 x 10(-8) overall).  相似文献   
70.
Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet-undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in >10,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 x 10(-7) to 8 x 10(-22)). Together, these 12 loci account for approximately 2% of the population variation in height. Individuals with < or =8 height-increasing alleles and > or =16 height-increasing alleles differ in height by approximately 3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号