首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   11篇
  国内免费   2篇
系统科学   7篇
教育与普及   2篇
理论与方法论   4篇
现状及发展   79篇
研究方法   90篇
综合类   212篇
自然研究   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   50篇
  2011年   54篇
  2010年   23篇
  2009年   6篇
  2008年   35篇
  2007年   32篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   17篇
  2002年   26篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1975年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有399条查询结果,搜索用时 46 毫秒
301.
MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe ?/?) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe ?/? mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.  相似文献   
302.
Renal tubular epithelial cells are exposed to mechanical forces due to fluid flow shear stress within the lumen of the nephron. These cells respond by activation of mechano-sensors located at the plasma membrane or the primary cilium, having crucial roles in maintenance of cellular homeostasis and signaling. In this paper, we applied fluid shear stress to study TGF-β signaling in renal epithelial cells with and without expression of the Pkd1-gene, encoding a mechano-sensor mutated in polycystic kidney disease. TGF-β signaling modulates cell proliferation, differentiation, apoptosis, and fibrotic deposition, cellular programs that are altered in renal cystic epithelia. SMAD2/3-mediated signaling was activated by fluid flow, both in wild-type and Pkd1 ?/? cells. This was characterized by phosphorylation and nuclear accumulation of p-SMAD2/3, as well as altered expression of downstream target genes and epithelial-to-mesenchymal transition markers. This response was still present after cilia ablation. An inhibitor of upstream type-I-receptors, ALK4/ALK5/ALK7, as well as TGF-β-neutralizing antibodies effectively blocked SMAD2/3 activity. In contrast, an activin-ligand trap was ineffective, indicating that increased autocrine TGF-β signaling is involved. To study potential involvement of MAPK/ERK signaling, cells were treated with a MEK1/2 inhibitor. Surprisingly, fluid flow-induced expression of most SMAD2/3 targets was further enhanced upon MEK inhibition. We conclude that fluid shear stress induces autocrine TGF-β/ALK5-induced target gene expression in renal epithelial cells, which is partially restrained by MEK1/2-mediated signaling.  相似文献   
303.
Extracellular Gram-negative pathogenic bacteria target essential cytoplasmic processes of eukaryotic cells by using effector protein delivery systems such as the type III secretion system (T3SS). These secretion systems directly inject effector proteins into the host cell cytoplasm. Among the T3SS-dependent Yop proteins of pathogenic Yersinia, the function of the effector protein YopM remains enigmatic. In a recent study, we demonstrated that recombinant YopM from Yersinia enterocolitica enters host cells autonomously without the presence of bacteria and thus identified YopM as a novel bacterial cell-penetrating protein. Following entry YopM down-regulates expression of pro-inflammatory cytokines such as tumor necrosis factor α. These properties earmark YopM for further development as a novel anti-inflammatory therapeutic. To elucidate the uptake and intracellular targeting mechanisms of this bacterial cell-penetrating protein, we analyzed possible routes of internalization employing ultra-cryo electron microscopy. Our results reveal that under physiological conditions, YopM enters cells predominantly by exploiting endocytic pathways. Interestingly, YopM was detected free in the cytosol and inside the nucleus. We could not observe any colocalization of YopM with secretory membranes, which excludes retrograde transport as the mechanism for cytosolic release. However, our findings indicate that direct membrane penetration and/or an endosomal escape of YopM contribute to the cytosolic and nuclear localization of the protein. Surprisingly, even when endocytosis is blocked, YopM was found to be associated with endosomes. This suggests an intracellular endosome-associated transport of YopM.  相似文献   
304.
In addition to its activity in nicotinamide adenine dinucleotide (NAD(+)) synthesis, the nuclear nicotinamide mononucleotide adenyltransferase NMNAT1 acts as a chaperone that protects against neuronal activity-induced degeneration. Here we report that compound heterozygous and homozygous NMNAT1 mutations cause severe neonatal neurodegeneration of the central retina and early-onset optic atrophy in 22 unrelated individuals. Their clinical presentation is consistent with Leber congenital amaurosis and suggests that the mutations affect neuroprotection of photoreceptor cells.  相似文献   
305.
We show that haploinsufficiency of KANSL1 is sufficient to cause the 17q21.31 microdeletion syndrome, a multisystem disorder characterized by intellectual disability, hypotonia and distinctive facial features. The KANSL1 protein is an evolutionarily conserved regulator of the chromatin modifier KAT8, which influences gene expression through histone H4 lysine 16 (H4K16) acetylation. RNA sequencing studies in cell lines derived from affected individuals and the presence of learning deficits in Drosophila melanogaster mutants suggest a role for KANSL1 in neuronal processes.  相似文献   
306.
Maize is both an exciting model organism in plant genetics and also the most important crop worldwide for food, animal feed and bioenergy production. Recent genome-wide association and metabolic profiling studies aimed to resolve quantitative traits to their causal genetic loci and key metabolic regulators. Here we present a complementary approach that exploits large-scale genomic and metabolic information to predict complex, highly polygenic traits in hybrid testcrosses. We crossed 285 diverse Dent inbred lines from worldwide sources with two testers and predicted their combining abilities for seven biomass- and bioenergy-related traits using 56,110 SNPs and 130 metabolites. Whole-genome and metabolic prediction models were built by fitting effects for all SNPs or metabolites. Prediction accuracies ranged from 0.72 to 0.81 for SNPs and from 0.60 to 0.80 for metabolites, allowing a reliable screening of large collections of diverse inbred lines for their potential to create superior hybrids.  相似文献   
307.
Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1–3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svr PG33 mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides.  相似文献   
308.
Common acquired melanocytic nevi are benign neoplasms that are composed of small, uniform melanocytes and are typically present as flat or slightly elevated pigmented lesions on the skin. We describe two families with a new autosomal dominant syndrome characterized by multiple, skin-colored, elevated melanocytic tumors. In contrast to common acquired nevi, the melanocytic neoplasms in affected family members ranged histopathologically from epithelioid nevi to atypical melanocytic proliferations that showed overlapping features with melanoma. Some affected individuals developed uveal or cutaneous melanomas. Segregating with this phenotype, we found inactivating germline mutations of BAP1, which encodes a ubiquitin carboxy-terminal hydrolase. The majority of melanocytic neoplasms lost the remaining wild-type allele of BAP1 by various somatic alterations. In addition, we found BAP1 mutations in a subset of sporadic melanocytic neoplasms showing histological similarities to the familial tumors. These findings suggest that loss of BAP1 is associated with a clinically and morphologically distinct type of melanocytic neoplasm.  相似文献   
309.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40-50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.  相似文献   
310.
Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号