首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22560篇
  免费   57篇
  国内免费   53篇
系统科学   234篇
丛书文集   493篇
教育与普及   45篇
理论与方法论   61篇
现状及发展   9530篇
研究方法   896篇
综合类   11039篇
自然研究   372篇
  2013年   129篇
  2012年   282篇
  2011年   671篇
  2010年   107篇
  2008年   333篇
  2007年   385篇
  2006年   406篇
  2005年   395篇
  2004年   381篇
  2003年   385篇
  2002年   313篇
  2001年   708篇
  2000年   715篇
  1999年   415篇
  1992年   413篇
  1991年   364篇
  1990年   390篇
  1989年   327篇
  1988年   371篇
  1987年   368篇
  1986年   342篇
  1985年   485篇
  1984年   365篇
  1983年   304篇
  1982年   238篇
  1981年   256篇
  1980年   345篇
  1979年   687篇
  1978年   581篇
  1977年   554篇
  1976年   473篇
  1975年   534篇
  1974年   664篇
  1973年   584篇
  1972年   589篇
  1971年   704篇
  1970年   926篇
  1969年   726篇
  1968年   626篇
  1967年   657篇
  1966年   597篇
  1965年   434篇
  1964年   113篇
  1959年   265篇
  1958年   400篇
  1957年   303篇
  1956年   269篇
  1955年   238篇
  1954年   263篇
  1948年   176篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Prescher JA  Dube DH  Bertozzi CR 《Nature》2004,430(7002):873-877
Cell surfaces are endowed with biological functionality designed to mediate extracellular communication. The cell-surface repertoire can be expanded to include abiotic functionality through the biosynthetic introduction of unnatural sugars into cellular glycans, a process termed metabolic oligosaccharide engineering. This technique has been exploited in fundamental studies of glycan-dependent cell-cell and virus-cell interactions and also provides an avenue for the chemical remodelling of living cells. Unique chemical functional groups can be delivered to cell-surface glycans by metabolism of the corresponding unnatural precursor sugars. These functional groups can then undergo covalent reaction with exogenous agents bearing complementary functionality. The exquisite chemical selectivity required of this process is supplied by the Staudinger ligation of azides and phosphines, a reaction that has been performed on cultured cells without detriment to their physiology. Here we demonstrate that the Staudinger ligation can be executed in living animals, enabling the chemical modification of cells within their native environment. The ability to tag cell-surface glycans in vivo may enable therapeutic targeting and non-invasive imaging of changes in glycosylation during disease progression.  相似文献   
992.
Desiraju GR 《Nature》2004,431(7004):25
  相似文献   
993.
A Maturing of Systems Thinking? Evidence from Three Perspectives   总被引:3,自引:2,他引:1  
This paper reviews trends in systems theory/thinking from the 1970s to the early 2000s. It proposes a maturation of the field based on certain conceptual and methodological advances that have sought to liberate systems thinking from earlier strictures. An edited dialogue among three prominent systems thinkers from different systems schools—Merrelyn Emery, Bob Flood, and Eric Wolstenholme—provides evidence. Similarities and differences are identified, complementarities among the schools are derived and analyzed, and trajectories for future research are indicated.  相似文献   
994.
The presence and functional role of the swelling-activated Cl- current (ICl(swell)) in rabbit cardiac Purkinje cells was examined using patch-clamp methodology. Extracellular hypotonicity (210 or 135 mOsm) activated an outwardly rectifying, time-independent current with a reversal potential close to the calculated Cl- equilibrium potential (ECl). The magnitude of this current was related to tonicity of the superfusate. The current was blocked by 0.5 mM 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). These features are comparable to those of ICl(swell) found in sinoatrial nodal, atrial, and ventricular myocytes. ICl(swell) activation at 210 and 135 mOsm depolarized the resting membrane potential with 6 and 10 mV and shortened the action potential by 18 and 33%, respectively. DIDS partially reversed ICl(swell)-induced action potential changes. We conclude that ICl(swell) is present in Purkinje cells and its activation leads to action potential shortening and resting membrane potential depolarization, both of which can promote the development of reentrant arrhythmias.Received 20 January 2004; received after revision 17 February 2004; accepted 25 February 2004  相似文献   
995.
The immunosuppressants tacrolimus (FK506) and cyclosporin A (CsA) have increased the survival rates in organ transplantation. Both drugs inhibit the protein phosphatase calcineurin (CaN) in activated T cells, exhibiting similar side-effects. Diabetes is observed more often in FK506 than CsA therapy, probably due to inhibition of new molecular targets other than CaN. We studied FK506 toxicity in mammalian cells. FK506, but not CsA, regulated p38 activation by osmotic stress, and decreased viability in osmostressed cells. In addition, FK506 treatment strongly increased the phosphorylation of the eukaryotic initiation factor-2a (eIF-2a) subunit. eIF-2a phosphorylation, p38 inhibition and cell lethality were relieved by addition of excess amino acids to the medium, suggesting that amino acid availability mediated FK506 toxicity. Therefore, these FK506-dependent responses could be relevant to the non-therapeutic effects of FK506 therapy.Received 16 October 2003; received after revision 8 January 2004; accepted 14 January 2004  相似文献   
996.
Neurobiology and neuroimmunology of Tourette’s syndrome: an update   总被引:4,自引:0,他引:4  
Tourettes syndrome is a childhood-onset neuropsychiatric disorder characterized by the presence of both multiple motor and vocal tics. While the pathogenesis at a molecular and cellular level remains unknown, structural and functional neuroimaging studies point to the involvement of the basal ganglia and related cortico-striato-thalamo-cortical circuits as the neuroanatomical site for Tourettes syndrome. Moreover, Tourettes syndrome has a strong genetic component, and considerable progress has been made in understanding the mode of transmission and in identifying potential genomic loci. Summaries of recent findings in these areas will be reviewed, followed by a critical overview of findings both supporting and challenging the proposed autoimmune hypothesis of Tourettes syndrome. We conclude that Tourettes syndrome is a heterogeneous disorder, and that immune factors may indeed be involved in some patients.Received 12 August 2003; received after revision 8 October 2003; accepted 31 October 2003  相似文献   
997.
Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc3Man9GlcNAc2 glycans after trimming with endoplasmic reticulum (ER) -glucosidases and -mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc1Man9GlcNAc2) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man8GlcNAc2 isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc2 along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man5GlcNAc1 by the action of cytosolic endo--N-acetylglucosaminidase and -mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc3Man9GlcNAc2-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.Received 26 January 2004; accepted 25 February 2004  相似文献   
998.
999.
Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human -lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.Received 30 January 2004; received after revision 5 March 2004; accepted 16 March 2004  相似文献   
1000.
Staphylocoagulase (SC) secreted by Staphylococcus aureus is a potent non-proteolytic activator of the blood coagulation zymogen prothrombin and the prototype of a newly established zymogen activator and adhesion protein (ZAAP) family. The conformationally activated SC·prothrombin complex specifically cleaves fibrinogen to fibrin, which propagates the growth of bacteria-fibrin-platelet vegetations in acute bacterial endocarditis. Our recent 2.2 Å X-ray crystal structures of an active SC fragment [SC(1-325)] bound to the prothrombin zymogen catalytic domain, prethrombin 2, demonstrated that SC(1-325) represents a new type of non-proteolytic activator with a unique fold. The observed insertion of the SC(1-325) N-terminus into the Ile 16 cleft of prethrombin 2, which triggers the activating conformational change, provided the first unambiguous structural evidence for the molecular sexuality mechanism of non-proteolytic zymogen activation. Based on the SC(1-325) fold, a new family of bifunctional zymogen activator and adhesion proteins was identified that possess N-terminal domains homologous to SC(1-325) and C-terminal domains that mediate adhesion to plasma or extracellular matrix proteins. Further investigation of the ZAAP family may lead to new insights into the mechanisms of bacterial factors that hijack zymogens of the human blood coagulation and fibrinolytic systems to promote and disseminate endocarditis and other infectious diseases.Received 30 June 2004; received after revision 28 July 2004; accepted 4 August 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号