首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
  国内免费   4篇
系统科学   1篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   61篇
研究方法   5篇
综合类   49篇
自然研究   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   5篇
  2009年   3篇
  2008年   11篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
  1948年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
11.
12.
Summary These studies have demonstrated a positive correlation between the acidic phospholipids and the serotonin content and between the lysolecithin and the dopamine content in the cerebral, pedal and visceral ganglia ofMytilus edulis. These relationships were further supported by experiments utilizing 6-hydroxydopamine and 5,6-dihydroxytryptamine.This study was partially supported by USPHS grant NS 10845 to Dr E. Aiello of Fordham University.Presently at Medgar Evers College of C.U.N.Y., Brooklyn, N.Y. 11225.  相似文献   
13.
14.
Circadian clocks have evolved to synchronize physiology, metabolism and behaviour to the 24-h geophysical cycles of the Earth. Drosophila melanogaster's rhythmic locomotor behaviour provides the main phenotype for the identification of higher eukaryotic clock genes. Under laboratory light-dark cycles, flies show enhanced activity before lights on and off signals, and these anticipatory responses have defined the neuronal sites of the corresponding morning (M) and evening (E) oscillators. However, the natural environment provides much richer cycling environmental stimuli than the laboratory, so we sought to examine fly locomotor rhythms in the wild. Here we show that several key laboratory-based assumptions about circadian behaviour are not supported by natural observations. These include the anticipation of light transitions, the midday 'siesta', the fly's crepuscular activity, its nocturnal behaviour under moonlight, and the dominance of light stimuli over temperature. We also observe a third major locomotor component in addition to M and E, which we term 'A' (afternoon). Furthermore, we show that these natural rhythm phenotypes can be observed in the laboratory by using realistic temperature and light cycle simulations. Our results suggest that a comprehensive re-examination of circadian behaviour and its molecular readouts under simulated natural conditions will provide a more authentic interpretation of the adaptive significance of this important rhythmic phenotype. Such studies should also help to clarify the underlying molecular and neuroanatomical substrates of the clock under natural protocols.  相似文献   
15.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   
16.
The assembly of 80S ribosomes requires joining of the 40S and 60S subunits, which is triggered by the formation of an initiation complex on the 40S subunit. This event is rate-limiting for translation, and depends on external stimuli and the status of the cell. Here we show that 60S subunits are activated by release of eIF6 (also termed p27BBP). In the cytoplasm, eIF6 is bound to free 60S but not to 80S. Furthermore, eIF6 interacts in the cytoplasm with RACK1, a receptor for activated protein kinase C (PKC). RACK1 is a major component of translating ribosomes, which harbour significant amounts of PKC. Loading 60S subunits with eIF6 caused a dose-dependent translational block and impairment of 80S formation, which were reversed by expression of RACK1 and stimulation of PKC in vivo and in vitro. PKC stimulation led to eIF6 phosphorylation, and mutation of a serine residue in the carboxy terminus of eIF6 impaired RACK1/PKC-mediated translational rescue. We propose that eIF6 release regulates subunit joining, and that RACK1 provides a physical and functional link between PKC signalling and ribosome activation.  相似文献   
17.
Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced beta-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced beta-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K A(y) and ob/ob (also known as Lep/Lep) mice-two genetic models of obesity-have markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.  相似文献   
18.
Sterzik MF  Bagnulo S  Palle E 《Nature》2012,483(7387):64-66
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700?nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.  相似文献   
19.
20.
Biogenically driven organic contribution to marine aerosol   总被引:1,自引:0,他引:1  
Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. So far, much of the focus on marine aerosol has centred on the production of aerosol from sea-salt and non-sea-salt sulphates. Recent field experiments, however, have shown that known aerosol production processes for inorganic species cannot account for the entire aerosol mass that occurs in submicrometre sizes. Several experimental studies have pointed to the presence of significant concentrations of organic matter in marine aerosol. There is some information available about the composition of organic matter, but the contribution of organic matter to marine aerosol, as a function of aerosol size, as well as its characterization as hydrophilic or hydrophobic, has been lacking. Here we measure the physical and chemical characteristics of submicrometre marine aerosol over the North Atlantic Ocean during plankton blooms progressing from spring through to autumn. We find that during bloom periods, the organic fraction dominates and contributes 63% to the submicrometre aerosol mass (about 45% is water-insoluble and about 18% water-soluble). In winter, when biological activity is at its lowest, the organic fraction decreases to 15%. Our model simulations indicate that organic matter can enhance the cloud droplet concentration by 15% to more than 100% and is therefore an important component of the aerosol-cloud-climate feedback system involving marine biota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号