排序方式: 共有71条查询结果,搜索用时 13 毫秒
31.
Monica Bari Tiziana Bonifacino Marco Milanese Paola Spagnuolo Simona Zappettini Natalia Battista Francesco Giribaldi Cesare Usai Giambattista Bonanno Mauro Maccarrone 《Cellular and molecular life sciences : CMLS》2011,68(5):833-845
The endocannabinoid system and endocannabinoid receptor-driven modulation of glutamate release were studied in rat brain cortex
astroglial gliosomes. These preparations contained the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, as well their major biosynthetic (N-acyl-phosphatidylethanolamines-hydrolyzing-phospholipase D and diacylglycerol-lipase) and catabolic (fatty acid amide-hydrolase
and monoacylglycerol-lipase) enzymes. Gliosomes expressed type-1 (CB1R), type-2 (CB2R) cannabinoid, and type-1 vanilloid (TRPV1)
receptors, as ascertained by Western blotting and confocal microscopy. Methanandamide, a stable analogue of anandamide acting
as CB1R, CB2R, and TRPV1 agonist, stimulated or inhibited the depolarization-evoked gliosomal [3H]d-aspartate release, at lower and higher concentrations, respectively. Experiments with ACEA (arachidonyl-2′-chloroethylamide),
JWH133 ((6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]-pyran) and capsaicin, selective
agonists at CB1R, CB2R and TRPV1, respectively, demonstrated that potentiation of [3H]d-aspartate release was due to CB1R while inhibition to CB2R and TRPV1 engagement. These findings were confirmed by using selective
receptor antagonists. Furthermore, CB1R activation caused increase of intracellular IP3 and Ca2+ concentration, suggesting an involvement of phospholipase C. 相似文献
32.
C. E. Constantinou J. L. Neubarth Monica Mensah-Dwumah 《Cellular and molecular life sciences : CMLS》1978,34(5):614-615
Summary The pacemaker properties of the various regions of isolated segments of the rabbit renal pelvis were examined. The results show that pacemaker frequency and waveform of contraction change significantly within the renal pelvis. The highest frequency was encountered at the fornix, while the ureteropelvic junction is lowest.This work was supported by NIH Grant No AM19366. 相似文献
33.
Heilig R Eckenberg R Petit JL Fonknechten N Da Silva C Cattolico L Levy M Barbe V de Berardinis V Ureta-Vidal A Pelletier E Vico V Anthouard V Rowen L Madan A Qin S Sun H Du H Pepin K Artiguenave F Robert C Cruaud C Brüls T Jaillon O Friedlander L Samson G Brottier P Cure S Ségurens B Anière F Samain S Crespeau H Abbasi N Aiach N Boscus D Dickhoff R Dors M Dubois I Friedman C Gouyvenoux M James R Madan A Mairey-Estrada B Mangenot S Martins N Ménard M Oztas S Ratcliffe A Shaffer T Trask B 《Nature》2003,421(6923):601-607
Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end. 相似文献
34.
Hay SI Cox J Rogers DJ Randolph SE Stern DI Shanks GD Myers MF Snow RW 《Nature》2002,415(6874):905-909
The public health and economic consequences of Plasmodium falciparum malaria are once again regarded as priorities for global development. There has been much speculation on whether anthropogenic climate change is exacerbating the malaria problem, especially in areas of high altitude where P. falciparum transmission is limited by low temperature. The International Panel on Climate Change has concluded that there is likely to be a net extension in the distribution of malaria and an increase in incidence within this range. We investigated long-term meteorological trends in four high-altitude sites in East Africa, where increases in malaria have been reported in the past two decades. Here we show that temperature, rainfall, vapour pressure and the number of months suitable for P. falciparum transmission have not changed significantly during the past century or during the period of reported malaria resurgence. A high degree of temporal and spatial variation in the climate of East Africa suggests further that claimed associations between local malaria resurgences and regional changes in climate are overly simplistic. 相似文献
35.
A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins 总被引:42,自引:0,他引:42
Polo S Sigismund S Faretta M Guidi M Capua MR Bossi G Chen H De Camilli P Di Fiore PP 《Nature》2002,416(6879):451-455
Ubiquitination is a post-translation modification in which ubiquitin chains or single ubiquitin molecules are appended to target proteins, giving rise to poly- or monoubiquitination, respectively. Polyubiquitination targets proteins for destruction by the proteasome. The role of monoubiquitination is less understood, although a function in membrane trafficking is emerging, at least in yeast. Here we report that a short amino-acid stretch at the carboxy-termini of the monoubiquitinated endocytic proteins Eps15 and eps15R is indispensable for their monoubiquitination. A similar sequence, also required for this modification, is found in other cytosolic endocytic proteins, such as epsins and Hrs. These sequences comprise a protein motif, UIM (ref. 6), which has been proposed to bind to ubiquitin. We confirm this for the UIMs of eps15, eps15R, epsins and Hrs. Thus, the same motif in several endocytic proteins is responsible for ubiquitin recognition and monoubiquitination. Our results predict the existence of a UIM:ubiquitin-based intracellular network. Eps15/eps15R, epsins and Hrs may function as adaptors between ubiquitinated membrane cargo and either the clathrin coat or other endocytic scaffolds. In addition, through their own ubiquitination, they may further contribute to the amplification of this network in the endocytic pathway. 相似文献
36.
Lysyl oxidase is essential for hypoxia-induced metastasis 总被引:1,自引:0,他引:1
Erler JT Bennewith KL Nicolau M Dornhöfer N Kong C Le QT Chi JT Jeffrey SS Giaccia AJ 《Nature》2006,440(7088):1222-1226
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases. 相似文献
37.
Star B Nederbragt AJ Jentoft S Grimholt U Malmstrøm M Gregers TF Rounge TB Paulsen J Solbakken MH Sharma A Wetten OF Lanzén A Winer R Knight J Vogel JH Aken B Andersen O Lagesen K Tooming-Klunderud A Edvardsen RB Tina KG Espelund M Nepal C Previti C Karlsen BO Moum T Skage M Berg PR Gjøen T Kuhl H Thorsen J Malde K Reinhardt R Du L Johansen SD Searle S Lien S Nilsen F Jonassen I Omholt SW Stenseth NC Jakobsen KS 《Nature》2011,477(7363):207-210
Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC)?II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC?II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC?I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC?II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates. 相似文献
38.
Irene Faravelli Giulietta Riboldi Monica Nizzardo Chiara Simone Chiara Zanetta Nereo Bresolin Giacomo P. Comi Stefania Corti 《Cellular and molecular life sciences : CMLS》2014,71(17):3257-3268
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application. 相似文献
39.
40.
Jian Zhao Urban Lendahl Monica Nistér 《Cellular and molecular life sciences : CMLS》2013,70(6):951-976
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates. 相似文献