首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
现状及发展   2篇
研究方法   4篇
综合类   13篇
  2011年   2篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1986年   1篇
  1983年   1篇
  1978年   1篇
  1968年   1篇
  1966年   2篇
  1957年   1篇
  1948年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
A new source of embryonic lymphocytes in the mouse   总被引:4,自引:0,他引:4  
L Kubai  R Auerbach 《Nature》1983,301(5896):154-156
The source of stem cells within the early mammalian embryo has not been identified. The yolk sac, once thought to provide the early stem cells in birds, is now seen more as a primitive effector organ capable of allorecognition, natural cytotoxic reactions and elaboration of cytokines. In lower vertebrates the source appears to be within a region delineated by the anterior limbs, foregut and mesonephros. That region defines the boundaries of the developing omentum, a fold in the peritoneum. As the omentum is known to develop lymphoid cells postnatally we have now examined the omental rudiment for the presence of lymphoid cell precursors. Our experiments provide evidence that the presumptive omentum of the 13-day mouse embryo is capable of histiotypic differentiation into a reticular organ containing a significant number of Thy 1+ lymphocytes, which suggests that the omentum may represent a new primary lymphoid organ in the mouse.  相似文献   
12.
J Farley  S Auerbach 《Nature》1986,319(6050):220-223
Phosphorylation of ion channels has been suggested as one molecular mechanism responsible for learning-produced long-term changes in neuronal excitability. Persistent training-produced changes in two distinct K+ currents (IA (ref. 2), IK-Ca (refs 3,4)) and a voltage-dependent calcium current (ICa; refs 3,4) have previously been shown to occur in type B photoreceptors of Hermissenda, as a result of associative learning. But the identity of the phosphorylation pathway(s) responsible for these changes has not as yet been determined. Injections of cyclic AMP-dependent protein kinase reduce a K+ current (IK) in B cells which is different from those changed by training, but fails to reduce IA and IK-Ca. Phosphorylase b kinase (an exogenous calcium/calmodulin-dependent kinase) reduces IA, but whether IK-Ca and ICa are changed in the manner of associative training is not yet known. Another protein kinase present in high concentrations in both mammalian brain and molluscan nervous systems is protein kinase C, which is both calcium- and phospholipid-sensitive. We now present evidence that activation of protein kinase C by the tumour promoter phorbol ester (PDB) and intracellular injection of the enzyme induce conductance changes similar to those caused by associative training in Hermissenda B cells (that is a reduction of IA and IK-Ca, and enhancement of ICa). These results represent the first direct demonstration that protein kinase C affects membrane K+ ion conductance mechanisms.  相似文献   
13.
PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.  相似文献   
14.
Fanconi anemia is a rare recessive disorder characterized by genome instability, congenital malformations, progressive bone marrow failure and predisposition to hematologic malignancies and solid tumors. At the cellular level, hypersensitivity to DNA interstrand crosslinks is the defining feature in Fanconi anemia. Mutations in thirteen distinct Fanconi anemia genes have been shown to interfere with the DNA-replication-dependent repair of lesions involving crosslinked DNA at stalled replication forks. Depletion of SLX4, which interacts with multiple nucleases and has been recently identified as a Holliday junction resolvase, results in increased sensitivity of the cells to DNA crosslinking agents. Here we report the identification of biallelic SLX4 mutations in two individuals with typical clinical features of Fanconi anemia and show that the cellular defects in these individuals' cells are complemented by wildtype SLX4, demonstrating that biallelic mutations in SLX4 (renamed here as FANCP) cause a new subtype of Fanconi anemia, Fanconi anemia-P.  相似文献   
15.
Auerbach BD  Osterweil EK  Bear MF 《Nature》2011,480(7375):63-68
Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.  相似文献   
16.
The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia   总被引:19,自引:0,他引:19  
Seven Fanconi anemia-associated proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL) form a nuclear Fanconi anemia core complex that activates the monoubiquitination of FANCD2, targeting FANCD2 to BRCA1-containing nuclear foci. Cells from individuals with Fanconi anemia of complementation groups D1 and J (FA-D1 and FA-J) have normal FANCD2 ubiquitination. Using genetic mapping, mutation identification and western-blot data, we identify the defective protein in FA-J cells as BRIP1 (also called BACH1), a DNA helicase that is a binding partner of the breast cancer tumor suppressor BRCA1.  相似文献   
17.
Effect of oxygen concentration on the development of two-cell mouse embryos   总被引:2,自引:0,他引:2  
S Auerbach  R L Brinster 《Nature》1968,217(5127):465-466
  相似文献   
18.
Grosman C  Zhou M  Auerbach A 《Nature》2000,403(6771):773-776
Allosteric transitions allow fast regulation of protein function in living systems. Even though the end points of such conformational changes are known for many proteins, the characteristics of the paths connecting these states remain largely unexplored. Rate-equilibrium linear free-energy relationships (LFERs) provide information about such pathways by relating changes in the free energy of the transition state to those of the ground states upon systematic perturbation of the system. Here we present an LFER analysis of the gating reaction pathway of the muscle acetylcholine receptor. We studied the closed <==> open conformational change at the single-molecule level following perturbation by series of single-site mutations, agonists and membrane voltages. This method provided a snapshot of several regions of the receptor at the transition state in terms of their approximate positions along the reaction coordinate, on a scale from 0 (closed-like) to 1 (open-like). The resulting map reveals a spatial gradient of positional values, which suggests that the conformational change proceeds in a wave-like manner, with the low-to-high affinity change at the transmitter-binding sites preceding the complete opening of the pore.  相似文献   
19.
Purohit P  Mitra A  Auerbach A 《Nature》2007,446(7138):930-933
Muscle contraction is triggered by the opening of acetylcholine receptors at the vertebrate nerve-muscle synapse. The M2 helix of this allosteric membrane protein lines the channel, and contains a 'gate' that regulates the flow of ions through the pore. We used single-molecule kinetic analysis to probe the transition state of the gating conformational change and estimate the relative timing of M2 motions in the alpha-subunit of the murine acetylcholine receptor. This analysis produces a 'Phi-value' for a given residue that reflects its open-like versus closed-like character at the transition state. Here we show that most of the residues throughout the length of M2 have a Phi-value of approximately 0.64 but that some near the middle have lower Phi-values of 0.52 or 0.31, suggesting that alphaM2 moves in three discrete steps. The core of the channel serves both as a gate that regulates ion flow and as a hub that directs the propagation of the gating isomerization through the membrane domain of the acetylcholine receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号