全文获取类型
收费全文 | 177篇 |
免费 | 1篇 |
专业分类
系统科学 | 4篇 |
教育与普及 | 1篇 |
理论与方法论 | 3篇 |
现状及发展 | 26篇 |
研究方法 | 29篇 |
综合类 | 114篇 |
自然研究 | 1篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2018年 | 5篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 2篇 |
2012年 | 16篇 |
2011年 | 31篇 |
2010年 | 6篇 |
2009年 | 2篇 |
2008年 | 19篇 |
2007年 | 12篇 |
2006年 | 13篇 |
2005年 | 15篇 |
2004年 | 13篇 |
2003年 | 15篇 |
2002年 | 11篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
排序方式: 共有178条查询结果,搜索用时 31 毫秒
41.
Emergent quantum technologies have led to increasing interest in decoherence--the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies. 相似文献
42.
Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment 总被引:2,自引:0,他引:2
Scherber C Eisenhauer N Weisser WW Schmid B Voigt W Fischer M Schulze ED Roscher C Weigelt A Allan E Bessler H Bonkowski M Buchmann N Buscot F Clement LW Ebeling A Engels C Halle S Kertscher I Klein AM Koller R König S Kowalski E Kummer V Kuu A Lange M Lauterbach D Middelhoff C Migunova VD Milcu A Müller R Partsch S Petermann JS Renker C Rottstock T Sabais A Scheu S Schumacher J Temperton VM Tscharntke T 《Nature》2010,468(7323):553-556
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades. 相似文献
43.
Markus F. Peschl 《Foundations of Science》2001,6(1-3):125-161
This paper addresses the questions concerningthe relationship between scientific andcognitive processes. The fact that both,science and cognition, aim at acquiring somekind of knowledge or representationabout the “world” is the key for establishing alink between these two domains. It turns outthat the constructivist frameworkrepresents an adequate epistemologicalfoundation for this undertaking, as its focusof interest is on the (constructive)relationship between the world and itsrepresentation. More specifically, it will beshown how cognitive processes and their primaryconcern to construct a representation of theenvironment and to generate functionallyfitting behavior can act as the basis forembedding the activities and dynamics of theprocess of science in them by making use ofconstructivist concepts, such as functionalfitness, structure determinedness, etc.Cognitive science and artificiallife provide the conceptual framework of representational spaces and their interactionbetween each other and with the environmentenabling us to establish this link betweencognitive processes and thedevelopment/dynamics of scientific theories.The concepts of activation, synaptic weight,and genetic (representational) spaces arepowerful tools which can be used as“explanatory vehicles”for a cognitivefoundation of science, more specifically forthe “context of discovery” (i.e., thedevelopment, construction, and dynamics ofscientific theories and paradigms).Representational spaces do not only offer us abetter understanding of embedding science incognition, but also show, how theconstructivist framework, both, can act as anadequate epistemological foundation for theseprocesses and can be instantiated by theserepresentational concepts from cognitivescience. The final part of this paper addresses somemore fundamental questions concerning thepositivistic and constructivist understandingof science and human cognition. Among otherthings it is asked, whether a purelyfunctionalist and quantitative view of theworld aiming almost exclusively at itsprediction and control is really satisfying forour intellect (having the goal of achieving aprofound understanding of reality). 相似文献
44.
Proteome survey reveals modularity of the yeast cell machinery 总被引:4,自引:0,他引:4
Gavin AC Aloy P Grandi P Krause R Boesche M Marzioch M Rau C Jensen LJ Bastuck S Dümpelfeld B Edelmann A Heurtier MA Hoffman V Hoefert C Klein K Hudak M Michon AM Schelder M Schirle M Remor M Rudi T Hooper S Bauer A Bouwmeester T Casari G Drewes G Neubauer G Rick JM Kuster B Bork P Russell RB Superti-Furga G 《Nature》2006,440(7084):631-636
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling. 相似文献
45.
Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation 总被引:1,自引:0,他引:1
Kienast M Kienast SS Calvert SE Eglinton TI Mollenhauer G François R Mix AC 《Nature》2006,443(7113):846-849
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before. 相似文献
46.
Recent decline in the global land evapotranspiration trend due to limited moisture supply 总被引:31,自引:0,他引:31
Jung M Reichstein M Ciais P Seneviratne SI Sheffield J Goulden ML Bonan G Cescatti A Chen J de Jeu R Dolman AJ Eugster W Gerten D Gianelle D Gobron N Heinke J Kimball J Law BE Montagnani L Mu Q Mueller B Oleson K Papale D Richardson AD Roupsard O Running S Tomelleri E Viovy N Weber U Williams C Wood E Zaehle S Zhang K 《Nature》2010,467(7318):951-954
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land?a key diagnostic criterion of the effects of climate change and variability?remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1?±?1.0?millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Ni?o event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science. 相似文献
47.
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin 总被引:11,自引:0,他引:11
Di Paolo G Pellegrini L Letinic K Cestra G Zoncu R Voronov S Chang S Guo J Wenk MR De Camilli P 《Nature》2002,420(6911):85-89
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion. 相似文献
48.
Asparagine-linked glycosylation is a post-translational modification of proteins containing the conserved sequence motif Asn-X-Ser/Thr. The attachment of oligosaccharides is implicated in diverse processes such as protein folding and quality control, organism development or host-pathogen interactions. The reaction is catalysed by oligosaccharyltransferase (OST), a membrane protein complex located in the endoplasmic reticulum. The central, catalytic enzyme of OST is the STT3 subunit, which has homologues in bacteria and archaea. Here we report the X-ray structure of a bacterial OST, the PglB protein of Campylobacter lari, in complex with an acceptor peptide. The structure defines the fold of STT3 proteins and provides insight into glycosylation sequon recognition and amide nitrogen activation, both of which are prerequisites for the formation of the N-glycosidic linkage. We also identified and validated catalytically important, acidic amino acid residues. Our results provide the molecular basis for understanding the mechanism of N-linked glycosylation. 相似文献
49.
Helper T cells regulate type-2 innate immunity in vivo 总被引:19,自引:0,他引:19
Type-2 immunity requires orchestration of innate and adaptive immune responses to protect mucosal sites from pathogens. Dysregulated type-2 responses result in allergy or asthma. T helper 2 (T(H)2) cells elaborate cytokines, such as interleukin (IL)-4, IL-5, IL-9 and IL-13, which work with toxic mediators of innate immune cells to establish environments that are inhospitable to helminth or arthropod invaders. The importance of T(H)2 cells in coordinating innate immune cells at sites of inflammation is not known. Here we show that polarized type-2 immune responses are initiated independently of adaptive immunity. In the absence of B and T cells, IL-4-expressing eosinophils were recruited to tissues of mice infected with the helminth Nippostrongylus brasiliensis, but eosinophils failed to degranulate. Reconstitution with CD4 T cells promoted accumulation of degranulated IL-4-expressing cells, but only if T cells were stimulated with cognate antigen. Degranulation correlated with tissue destruction, which was attenuated if eosinophils were depleted. Helper T cells confer antigen specificity on eosinophil cytotoxicity, but not cytokine responses, so defining a novel mechanism that focuses tissue injury at sites of immune challenge. 相似文献
50.