首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   0篇
  国内免费   1篇
系统科学   3篇
教育与普及   1篇
现状及发展   23篇
研究方法   19篇
综合类   74篇
自然研究   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2012年   15篇
  2011年   18篇
  2010年   9篇
  2009年   1篇
  2008年   10篇
  2007年   8篇
  2006年   13篇
  2005年   4篇
  2004年   5篇
  2003年   6篇
  2002年   13篇
  1996年   1篇
  1987年   2篇
  1982年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1971年   2篇
  1967年   2篇
  1960年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
61.
62.
Meiotic arrest and aneuploidy in MLH3-deficient mice   总被引:22,自引:0,他引:22  
MutL homolog 3 (Mlh3) is a member of a family of proteins conserved during evolution and having dual roles in DNA mismatch repair and meiosis. The pathway in eukaryotes consists of the DNA-binding components, which are the homologs of the bacterial MutS protein (MSH 2 6), and the MutL homologs, which bind to the MutS homologs and are essential for the repair process. Three of the six homologs of MutS that function in these processes, Msh2, Msh3 and Msh6, are involved in the mismatch repair of mutations, frameshifts and replication errors, and two others, Msh4 and Msh5, have specific roles in meiosis. Of the four MutL homologs, Mlh1, Mlh3, Pms1 and Pms2, three are involved in mismatch repair and at least two, Pms2 and Mlh1, are essential for meiotic progression in both yeast and mice. To assess the role of Mlh3 in mammalian meiosis, we have generated and characterized Mlh3(-/-) mice. Here we show that Mlh3(-/-) mice are viable but sterile. Mlh3 is required for Mlh1 binding to meiotic chromosomes and localizes to meiotic chromosomes from the mid pachynema stage of prophase I. Mlh3(-/-) spermatocytes reach metaphase before succumbing to apoptosis, but oocytes fail to complete meiosis I after fertilization. Our results show that Mlh3 has an essential and distinct role in mammalian meiosis.  相似文献   
63.
64.
High-density lipoproteins (HDLs) are anti-atherogenic lipoproteins that have a major role in transporting cholesterol from peripheral tissues to the liver, where it is removed. Epidemiologic studies have shown that low levels of high-density lipoprotein-cholesterol (HDL-C) are associated with an increased incidence of coronary heart disease and an increased mortality rate, indicating a protective role of high concentrations of HDL-C against atherogenesis and the development of coronary heart disease. HDL-C level is influenced by several genetic and nongenetic factors. Nongenetic factors include smoking, which has been shown to decrease the HDL-C level. Exercise and alcohol have been shown to increase HDL-C levels. Decreased HDL-C is often associated with other coronary heart disease risk factors such as obesity, hyperinsulinemia and insulin resistance, hypertriglyceridemia and hypertension. Although several genes have been identified for rare forms of dyslipidemia, the genes accounting for major variation in HDL-C levels have yet to be identified. Using a multipoint variance components linkage approach, we found strong evidence of linkage (lod score=3.4; P=0.00004) of a quantitative trait locus (QTL) for HDL-C level to a genetic location between markers D9S925 and D9S741 on chromosome 9p in Mexican Americans. A replication study in an independent set of Mexican American families confirmed the existence of a QTL on chromosome 9p.  相似文献   
65.
Summary Dense cells ofRubus chamaemorus L. (cloudberry) root meristems have been characterized by histochemical staining reactions at light and electron microscope levels. Presence of polyphenolic compounds in the cellular matrix contribute to the density of the dense cells.This research was supported by an operating grant from Agriculture Canada.  相似文献   
66.
67.
Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0-2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.  相似文献   
68.
Preserving the evolutionary potential of floras in biodiversity hotspots   总被引:2,自引:0,他引:2  
One of the biggest challenges for conservation biology is to provide conservation planners with ways to prioritize effort. Much attention has been focused on biodiversity hotspots. However, the conservation of evolutionary process is now also acknowledged as a priority in the face of global change. Phylogenetic diversity (PD) is a biodiversity index that measures the length of evolutionary pathways that connect a given set of taxa. PD therefore identifies sets of taxa that maximize the accumulation of 'feature diversity'. Recent studies, however, concluded that taxon richness is a good surrogate for PD. Here we show taxon richness to be decoupled from PD, using a biome-wide phylogenetic analysis of the flora of an undisputed biodiversity hotspot--the Cape of South Africa. We demonstrate that this decoupling has real-world importance for conservation planning. Finally, using a database of medicinal and economic plant use, we demonstrate that PD protection is the best strategy for preserving feature diversity in the Cape. We should be able to use PD to identify those key regions that maximize future options, both for the continuing evolution of life on Earth and for the benefit of society.  相似文献   
69.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 x 10(-16)) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5' donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.  相似文献   
70.
We investigated the role of protein tyrosine phosphatase 1B (PTP1B) in mammary tumorigenesis using both genetic and pharmacological approaches. It has been previously shown that transgenic mice with a deletion mutation in the region of Erbb2 encoding its extracellular domain (referred to as NDL2 mice, for 'Neu deletion in extracellular domain 2') develop mammary tumors that progress to lung metastasis. However, deletion of PTP1B activity in the NDL2 transgenic mice either by breeding with Ptpn1-deficient mice or by treatment with a specific PTP1B inhibitor results in significant mammary tumor latency and resistance to lung metastasis. In contrast, specific overexpression of PTP1B in the mammary gland leads to spontaneous breast cancer development. The regulation of ErbB2-induced mammary tumorigenesis by PTB1B occurs through the attenuation of both the MAP kinase (MAPK) and Akt pathways. This report provides a rationale for the development of PTP1B as a new therapeutic target in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号