排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
Durand CM Betancur C Boeckers TM Bockmann J Chaste P Fauchereau F Nygren G Rastam M Gillberg IC Anckarsäter H Sponheim E Goubran-Botros H Delorme R Chabane N Mouren-Simeoni MC de Mas P Bieth E Rogé B Héron D Burglen L Gillberg C Leboyer M Bourgeron T 《Nature genetics》2007,39(1):25-27
SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders. 相似文献
12.
Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation 总被引:13,自引:0,他引:13
Neuronal growth cones are guided to their targets by attractive and repulsive guidance cues. In mammals, netrin-1 is a bifunctional cue, attracting some axons and repelling others. Deleted in colorectal cancer (Dcc) is a receptor for netrin-1 that mediates its chemoattractive effect on commissural axons, but the signalling mechanisms that transduce this effect are poorly understood. Here we show that Dcc activates mitogen-activated protein kinase (MAPK) signalling, by means of extracellular signal-regulated kinase (ERK)-1 and -2, on netrin-1 binding in both transfected cells and commissural neurons. This activation is associated with recruitment of ERK-1/2 to a Dcc receptor complex. Inhibition of ERK-1/2 antagonizes netrin-dependent axon outgrowth and orientation. Thus, activation of MAPK signalling through Dcc contributes to netrin signalling in axon growth and guidance. 相似文献
13.
Sarparanta J Jonson PH Golzio C Sandell S Luque H Screen M McDonald K Stajich JM Mahjneh I Vihola A Raheem O Penttilä S Lehtinen S Huovinen S Palmio J Tasca G Ricci E Hackman P Hauser M Katsanis N Udd B 《Nature genetics》2012,44(4):450-5, S1-2
Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to chromosome 7q36 over a decade ago, but its genetic cause has remained elusive. Here we studied nine LGMD-affected families from Finland, the United States and Italy and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar myopathy-causing protein BAG3. Our data identify the genetic cause of LGMD1D, suggest that its pathogenesis is mediated by defective chaperone function and highlight how mutations in a ubiquitously expressed gene can exert effects in a tissue-, isoform- and cellular compartment-specific manner. 相似文献
14.
KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron 总被引:1,自引:0,他引:1
Louis-Dit-Picard H Barc J Trujillano D Miserey-Lenkei S Bouatia-Naji N Pylypenko O Beaurain G Bonnefond A Sand O Simian C Vidal-Petiot E Soukaseum C Mandet C Broux F Chabre O Delahousse M Esnault V Fiquet B Houillier P Bagnis CI Koenig J Konrad M Landais P Mourani C Niaudet P Probst V Thauvin C Unwin RJ Soroka SD Ehret G Ossowski S Caulfield M;International Consortium for Blood Pressure 《Nature genetics》2012,44(4):456-60, S1-3
Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na(+)-Cl(-) cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure. 相似文献
15.
16.
De Joussineau C Soulé J Martin M Anguille C Montcourrier P Alexandre D 《Nature》2003,426(6966):555-559
Drosophila thoracic mechanosensory bristles originate from cells that are singled out from 'proneural' groups of competent epithelial cells. Neural competence is restricted to individual sensory organ precursors (SOPs) by Delta/Notch-mediated 'lateral inhibition', whereas other cells in the proneural field adopt an epidermal fate. The precursors of the large macrochaetes differentiate separately from individual proneural clusters that comprise about 20-30 cells or as heterochronic pairs from groups of more than 100 cells, whereas the precursors of the small regularly spaced microchaetes emerge from even larger proneural fields. This indicates that lateral inhibition might act over several cell diameters; it was difficult to reconcile with the fact that the inhibitory ligand Delta is membrane-bound until the observation that SOPs frequently extend thin processes offered an attractive hypothesis. Here we show that the extension of these planar filopodia--a common attribute of wing imaginal disc cells--is promoted by Delta and that their experimental suppression reduces Notch signalling in distant cells and increases bristle density in large proneural groups, showing that these membrane specializations mediate long-range lateral inhibition. 相似文献
17.
Clustering neurotransmitter receptors at the synapse is crucial for efficient neurotransmission. Here we identify a Caenorhabditis elegans locus, lev-10, required for postsynaptic aggregation of ionotropic acetylcholine receptors (AChRs). lev-10 mutants were identified on the basis of weak resistance to the anthelminthic drug levamisole, a nematode-specific cholinergic agonist that activates AChRs present at neuromuscular junctions (NMJs) resulting in muscle hypercontraction and death at high concentrations. In lev-10 mutants, the density of levamisole-sensitive AChRs at NMJs is markedly reduced, yet the number of functional AChRs present at the muscle cell surface remains unchanged. LEV-10 is a transmembrane protein localized to cholinergic NMJs and required in body-wall muscles for AChR clustering. We also show that the LEV-10 extracellular region, containing five predicted CUB domains and one LDLa domain, is sufficient to rescue AChR aggregation in lev-10 mutants. This suggests a mechanism for AChR clustering that relies on extracellular protein-protein interactions. Such a mechanism is likely to be evolutionarily conserved because CUB/LDL transmembrane proteins similar to LEV-10, but lacking any assigned function, are expressed in the mammalian nervous system and might be used to cluster ionotropic receptors in vertebrates. 相似文献
18.
19.
Dinsdale EA Edwards RA Hall D Angly F Breitbart M Brulc JM Furlan M Desnues C Haynes M Li L McDaniel L Moran MA Nelson KE Nilsson C Olson R Paul J Brito BR Ruan Y Swan BK Stevens R Valentine DL Thurber RV Wegley L White BA Rohwer F 《Nature》2008,452(7187):629-632
Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes. 相似文献
20.
Delous M Baala L Salomon R Laclef C Vierkotten J Tory K Golzio C Lacoste T Besse L Ozilou C Moutkine I Hellman NE Anselme I Silbermann F Vesque C Gerhardt C Rattenberry E Wolf MT Gubler MC Martinovic J Encha-Razavi F Boddaert N Gonzales M Macher MA Nivet H Champion G Berthélémé JP Niaudet P McDonald F Hildebrandt F Johnson CA Vekemans M Antignac C Rüther U Schneider-Maunoury S Attié-Bitach T Saunier S 《Nature genetics》2007,39(7):875-881
Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder. 相似文献