首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8146篇
  免费   89篇
  国内免费   58篇
系统科学   50篇
丛书文集   90篇
教育与普及   14篇
理论与方法论   26篇
现状及发展   3456篇
研究方法   493篇
综合类   4058篇
自然研究   106篇
  2016年   59篇
  2014年   57篇
  2013年   54篇
  2012年   134篇
  2011年   259篇
  2010年   68篇
  2009年   65篇
  2008年   188篇
  2007年   202篇
  2006年   177篇
  2005年   173篇
  2004年   276篇
  2003年   151篇
  2002年   167篇
  2001年   304篇
  2000年   307篇
  1999年   222篇
  1992年   118篇
  1991年   124篇
  1990年   106篇
  1989年   99篇
  1988年   106篇
  1987年   121篇
  1986年   114篇
  1985年   158篇
  1984年   121篇
  1983年   98篇
  1982年   85篇
  1981年   116篇
  1980年   113篇
  1979年   253篇
  1978年   203篇
  1977年   185篇
  1976年   137篇
  1975年   159篇
  1974年   209篇
  1973年   177篇
  1972年   193篇
  1971年   212篇
  1970年   275篇
  1969年   210篇
  1968年   189篇
  1967年   210篇
  1966年   183篇
  1965年   145篇
  1959年   54篇
  1958年   104篇
  1957年   76篇
  1956年   73篇
  1954年   74篇
排序方式: 共有8293条查询结果,搜索用时 781 毫秒
411.
Lohse D  Rauhé R  Bergmann R  van der Meer D 《Nature》2004,432(7018):689-690
Sand can normally support a weight by relying on internal force chains. Here we weaken this force-chain structure in very fine sand by allowing air to flow through it: we find that the sand can then no longer support weight, even when the air is turned off and the bed has settled--a ball sinks into the sand to a depth of about five diameters. The final depth of the ball scales linearly with its mass and, above a threshold mass, a jet is formed that shoots sand violently into the air.  相似文献   
412.
Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmogorov-Arnold-Moser (KAM) theorem--a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt. By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency. This type of dynamics has wide-ranging implications in the theory of plasma physics, tokamak fusion, turbulence, ion traps, and quasicrystals. Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.  相似文献   
413.
Heck PR  Schmitz B  Baur H  Halliday AN  Wieler R 《Nature》2004,430(6997):323-325
Very large collisions in the asteroid belt could lead temporarily to a substantial increase in the rate of impacts of meteorites on Earth. Orbital simulations predict that fragments from such events may arrive considerably faster than the typical transit times of meteorites falling today, because in some large impacts part of the debris is transferred directly into a resonant orbit with Jupiter. Such an efficient meteorite delivery track, however, has not been verified. Here we report high-sensitivity measurements of noble gases produced by cosmic rays in chromite grains from a unique suite of fossil meteorites preserved in approximately 480 million year old sediments. The transfer times deduced from the noble gases are as short as approximately 10(5) years, and they increase with stratigraphic height in agreement with the estimated duration of sedimentation. These data provide powerful evidence that this unusual meteorite occurrence was the result of a long-lasting rain of meteorites following the destruction of an asteroid, and show that at least one strong resonance in the main asteroid belt can deliver material into the inner Solar System within the short timescales suggested by dynamical models.  相似文献   
414.
Batterham et al. report that the gut peptide hormone PYY3-36 decreases food intake and body-weight gain in rodents, a discovery that has been heralded as potentially offering a new therapy for obesity. However, we have been unable to replicate their results. Although the reasons for this discrepancy remain undetermined, an effective anti-obesity drug ultimately must produce its effects across a range of situations. The fact that the findings of Batterham et al. cannot easily be replicated calls into question the potential value of an anti-obesity approach that is based on administration of PYY3-36.  相似文献   
415.
Babaev E  Sudbø A  Ashcroft NW 《Nature》2004,431(7009):666-668
Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.  相似文献   
416.
Zhu RX  Potts R  Xie F  Hoffman KA  Deng CL  Shi CD  Pan YX  Wang HQ  Shi RP  Wang YC  Shi GH  Wu NQ 《Nature》2004,431(7008):559-562
The timing of early human dispersal to Asia is a central issue in the study of human evolution. Excavations in predominantly lacustrine sediments at Majuangou, Nihewan basin, north China, uncovered four layers of indisputable hominin stone tools. Here we report magnetostratigraphic results that constrain the age of the four artefact layers to an interval of nearly 340,000 yr between the Olduvai subchron and the Cobb Mountain event. The lowest layer, about 1.66 million years old (Myr), provides the oldest record of stone-tool processing of animal tissues in east Asia. The highest layer, at about 1.32 Myr, correlates with the stone tool layer at Xiaochangliang, previously considered the oldest archaeological site in this region. The findings at Majuangou indicate that the oldest known human presence in northeast Asia at 40 degrees N is only slightly younger than that in western Asia. This result implies that a long yet rapid migration from Africa, possibly initiated during a phase of warm climate, enabled early human populations to inhabit northern latitudes of east Asia over a prolonged period.  相似文献   
417.
418.
Maunz P  Puppe T  Schuster I  Syassen N  Pinkse PW  Rempe G 《Nature》2004,428(6978):50-52
All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction provides the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom-cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.  相似文献   
419.
Ravelli RB  Gigant B  Curmi PA  Jourdain I  Lachkar S  Sobel A  Knossow M 《Nature》2004,428(6979):198-202
Microtubules are cytoskeletal polymers of tubulin involved in many cellular functions. Their dynamic instability is controlled by numerous compounds and proteins, including colchicine and stathmin family proteins. The way in which microtubule instability is regulated at the molecular level has remained elusive, mainly because of the lack of appropriate structural data. Here, we present the structure, at 3.5 A resolution, of tubulin in complex with colchicine and with the stathmin-like domain (SLD) of RB3. It shows the interaction of RB3-SLD with two tubulin heterodimers in a curved complex capped by the SLD amino-terminal domain, which prevents the incorporation of the complexed tubulin into microtubules. A comparison with the structure of tubulin in protofilaments shows changes in the subunits of tubulin as it switches from its straight conformation to a curved one. These changes correlate with the loss of lateral contacts and provide a rationale for the rapid microtubule depolymerization characteristic of dynamic instability. Moreover, the tubulin-colchicine complex sheds light on the mechanism of colchicine's activity: we show that colchicine binds at a location where it prevents curved tubulin from adopting a straight structure, which inhibits assembly.  相似文献   
420.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号