首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
系统科学   1篇
现状及发展   26篇
研究方法   35篇
综合类   46篇
自然研究   4篇
  2021年   1篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   1篇
  2008年   14篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1997年   1篇
  1989年   1篇
  1972年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有112条查询结果,搜索用时 78 毫秒
41.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A?site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A?site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P?site) on the 30S head and simultaneously establishes interaction with the exit site (E?site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain?IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.  相似文献   
42.
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.  相似文献   
43.
Climate change: losing Greenland   总被引:1,自引:0,他引:1  
Witze A 《Nature》2008,452(7189):798-802
  相似文献   
44.
45.
46.
47.
Witze A 《Nature》2008,455(7212):442-445
  相似文献   
48.
49.
Ahn S  Joyner AL 《Nature》2005,437(7060):894-897
Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.  相似文献   
50.
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号