首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38556篇
  免费   129篇
  国内免费   149篇
系统科学   181篇
丛书文集   537篇
教育与普及   63篇
理论与方法论   132篇
现状及发展   16457篇
研究方法   1567篇
综合类   19168篇
自然研究   729篇
  2013年   345篇
  2012年   550篇
  2011年   1270篇
  2010年   241篇
  2008年   634篇
  2007年   798篇
  2006年   740篇
  2005年   764篇
  2004年   795篇
  2003年   674篇
  2002年   705篇
  2001年   1284篇
  2000年   1228篇
  1999年   768篇
  1992年   727篇
  1991年   557篇
  1990年   618篇
  1989年   607篇
  1988年   569篇
  1987年   571篇
  1986年   631篇
  1985年   778篇
  1984年   569篇
  1983年   502篇
  1982年   433篇
  1981年   440篇
  1980年   513篇
  1979年   1244篇
  1978年   955篇
  1977年   922篇
  1976年   753篇
  1975年   772篇
  1974年   1147篇
  1973年   928篇
  1972年   1002篇
  1971年   1125篇
  1970年   1522篇
  1969年   1149篇
  1968年   1071篇
  1967年   1024篇
  1966年   993篇
  1965年   709篇
  1964年   212篇
  1959年   370篇
  1958年   689篇
  1957年   474篇
  1956年   372篇
  1955年   352篇
  1954年   376篇
  1948年   258篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
Anti-Latour   总被引:2,自引:0,他引:2  
  相似文献   
992.
At the end of mitosis, daughter cells are separated from each other by cytokinesis. This process involves equal partitioning and segregation of cytoplasm between the two cells. Despite years of study, the mechanism driving cytokinesis in animal cells is not fully understood. Actin and myosin are major components of the contractile ring, the structure at the equator between the dividing cells that provides the force necessary to constrict the cytoplasm. Despite this, there are also tantalizing results suggesting that cytokinesis can occur in the absence of myosin. It is unclear what the roles are of the few other contractile ring components identified to date. While it has been difficult to identify important proteins involved in cytokinesis, it has been even more challenging to pinpoint the regulatory mechanisms that govern this vital process. Cytokinesis must be precisely controlled both spatially and temporally; potential regulators of these parameters are just beginning to be identified. This review discusses the recent progress in our understanding of cytokinesis in animal cells and the mechanisms that may regulate it. Received 24 August 1998; received after revision 9 October 1998; accepted 9 October 1998  相似文献   
993.
Images, calculated from electron micrographs, show the three-dimensional structures of microtubules and tubulin sheets decorated stoichiometrically with motor protein molecules. Dimeric motor domains (heads) of kinesin and ncd, the kinesin-related protein that moves in the reverse direction, each appeared to bind to tubulin in the same way, by one of their two heads. The second heads show an interesting difference in position that seems to be related to the directions of movement of the two motors. X-ray crystallographic results showing the structures of kinesin and ncd to be very similar at atomic resolution, and homologous also to myosin, suggest that the two motor families may use mechanisms that have much in common. Nevertheless, myosins and kinesins differ kinetically. Also, whereas conformational changes in the myosin catalytic domain are amplified by a long lever arm that connects it to the stalk domain, kinesin and ncd do not appear to possess a structure with a similar function but may rely on biased diffusion in order to move along microtubules.  相似文献   
994.
The kinesins constitute a large family of motor proteins which are responsible for the distribution of numerous organelles, vesicles and macromolecular complexes throughout the cell. One class of these molecular motors, kinesin-II, is unique in that these proteins are typically found as heterotrimeric complexes containing two different, though related, kinesin-like motor subunits, and a single nonmotor subunit. The heteromeric nature of these kinesins appears to have resulted in a class of combinatorial kinesins which can 'mix and match' different motor subunits. Another novel feature of these motors is that the activities of several kinesin-II representatives are essential in the assembly of motile and nonmotile cilia, a role not attributed to any other kinesin. This review presents a brief overview of the structure and biological functions of kinesin-II, the heteromeric kinesin.  相似文献   
995.
Immune responses to DNA vaccines   总被引:16,自引:0,他引:16  
DNA vaccines, based on plasmid vectors expressing an antigen under the control of a strong promoter, have been shown to induce protective immune responses to a number of pathogens, including viruses, bacteria and parasites. They have also displayed efficacy in treatment or prevention of cancer, allergic diseases and autoimmunity. Immunologically, DNA vaccines induce a full spectrum of immune responses that include cytolytic T cells, T helper cells and antibodies. The immune response to DNA vaccines can be enhanced by genetic engineering of the antigen to facilitate its presentation to B and T cells. Furthermore, the immune response can be modulated by genetic adjuvants in the form of vectors expressing biologically active determinants or by more traditional adjuvants that facilitate uptake of DNA into cells. The ease of genetic manipulation of DNA vaccines invites their use not only as vaccines but also as research tools for immunologists and microbiologists. Received 26 October 1998; received after revision 3 December 1998; accepted 3 December 1998  相似文献   
996.
Recent studies have suggested that aspirin and aspirin-like compounds have a variety of actions in addition to their well-studied ability to inhibit cyclooxygenases. These actions include inhibition of the uncoupling of oxidative phosphorylation, decreases in adenosine triphosphate stores, increases in extracellular adenosine, downregulation of the expression and activity of inducible nitric oxide synthetase, inhibition and/or stimulation of various mitogen-activated protein kinase activities and inhibition of nuclear factor binding κB site (NF-κB) activation. Moreover, aspirin-like compounds have recently been shown to have previously unappreciated clinical and biological effects, some apparently independent of cyclooxygenase. In this review we discuss the various mechanisms of action of aspirin-like compounds and their relevance to clinical disease and therapy. Received 1 February 1999; received after revision 1 April 1999; accepted 7 May 1999  相似文献   
997.
A population of ventral neural tube cells has recently been shown to migrate out of the hind brain neural tube via the vagus nerve and contribute to the developing gastrointestinal tract. Since liver is also innervated by the vagus nerve, we sought to determine if these cells also migrate into the liver. Ventral neural tube cells in the caudal hindbrain of chick embryos were tagged with a replication-deficient retroviral vector containing the LacZ gene on embryonic day 2. Embryos were processed for detection of labeled cells on embryonic day 5 and 11. Labeled cells were seen in the liver on both days and identified as hepatocytes. Previously, it was believed that all hepatocytes develop from the gut endoderm. Results of the present study show an additional source for the formation of liver cells. Received 25 August 1998; received after revision 5 November 1998; accepted 5 November 1998  相似文献   
998.
999.
Numerous proteins are involved in the nucleotide excision repair (NER) and DNA mismatch repair (MMR) pathways. The function and specificity of these proteins during the mitotic cell cycle has been actively investigated, in large part due to the involvement of these systems in human diseases. In contrast, comparatively little is known about their functioning during meiosis. At least three repair pathways operate during meiosis in the yeast Saccharomyces cerevisiae to repair mismatches that occur as a consequence of heteroduplex formation in recombination. The first pathway is similar to the one acting during postreplicative mismatch repair in mitotically dividing cells, while two pathways are responsible for the repair of large loops during meiosis, using proteins from MMR and NER systems. Some MMR proteins also help prevent recombination between diverged sequences during meiosis, and act late in recombination to affect the resolution of crossovers. This review will discuss the current status of DNA mismatch repair and nucleotide excision repair proteins during meiosis, especially in the yeast S. cerevisiae. Received 21 September 1998; received after revision 23 November 1998; accepted 23 November 1998  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号